Non-Degeneracy of Peak Solutions to the Schrodinger-Newton System

被引:2
|
作者
Guo, Qing [1 ]
Xie, Huafei [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Cent China Normal Univ, Wuhan 430079, Peoples R China
关键词
Schrodinger-Newton System; Non-Degeneracy; Pohozaev Identity; UNIQUENESS;
D O I
10.1515/ans-2021-2128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following Schrodinger-Newton problem: -epsilon(2)Delta u + V(x)u = 1/8 pi epsilon(2) (integral(R3) u(2)(xi)/vertical bar x - xi vertical bar d xi)u, x is an element of R-3. For epsilon small enough, we prove the non-degeneracy of the positive solution to the above problem, that is, the corresponding linear operator L-epsilon(eta) = -epsilon(2)Delta eta(x) + V(x)eta(x) - 1/8 pi epsilon(2) (integral(R3)u(epsilon)(2)(xi)/vertical bar x - xi vertical bar d xi) eta(x) - 1/4 pi epsilon(2) (integral(R3)u(epsilon)(xi)eta(xi)/vertical bar x - xi vertical bar d xi)u(epsilon)(x) is non-degenerate, i.e., L-epsilon (eta(epsilon)) = 0 double right arrow eta(epsilon) = 0 for small epsilon > 0. The main tools are the local Pohozaev identities and the blow-up analysis. This may be the first non-degeneracy result on the peak solutions to the Schrodinger-Newton system.
引用
收藏
页码:447 / 460
页数:14
相关论文
共 50 条
  • [1] Existence and local uniqueness of normalized peak solutions for a Schrodinger-Newton system
    Guo, Qing
    Luo, Peng
    Wang, Chunhua
    Yang, Jing
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) : 879 - 925
  • [2] Non-degeneracy of multi-peak solutions for the Schrodinger-Poisson problem
    Chen, Lin
    Ding, Hui-Sheng
    Li, Benniao
    Ye, Jianghua
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [3] Multi-peak Positive Solutions of a Nonlinear Schrodinger-Newton Type System
    Gheraibia, Billel
    Wang, Chunhua
    ADVANCED NONLINEAR STUDIES, 2020, 20 (01) : 53 - 75
  • [4] Peak solutions without non-degeneracy conditions
    Dancer, E. N.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3077 - 3088
  • [5] INTERTWINING SEMICLASSICAL SOLUTIONS TO A SCHRODINGER-NEWTON SYSTEM
    Cingolani, Silvia
    Clapp, Monica
    Secchi, Simone
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (04): : 891 - 908
  • [6] Newton polytopes and non-degeneracy
    Wall, CTC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 509 : 1 - 19
  • [7] Non-degeneracy and existence of new solutions for the Schrodinger equations
    Guo, Yuxia
    Musso, Monica
    Peng, Shuangjie
    Yan, Shusen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 326 : 254 - 279
  • [8] New concentrated solutions for the nonlinear Schrodinger-Newton system
    Chen, Haixia
    Yang, Pingping
    APPLICABLE ANALYSIS, 2024, 103 (01) : 312 - 339
  • [9] Non-existence of Multi-peak Solutions to the Schrodinger-Newton System with L2-constraint
    Guo, Qing
    Duan, Li-xiu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (04): : 868 - 877
  • [10] Non-degeneracy of single-peak solutions to a Kirchhoff equation
    Yan, Jiahong
    Yang, Jing
    APPLICABLE ANALYSIS, 2023, 102 (04) : 1222 - 1228