Non-Degeneracy of Peak Solutions to the Schrodinger-Newton System

被引:2
|
作者
Guo, Qing [1 ]
Xie, Huafei [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Cent China Normal Univ, Wuhan 430079, Peoples R China
关键词
Schrodinger-Newton System; Non-Degeneracy; Pohozaev Identity; UNIQUENESS;
D O I
10.1515/ans-2021-2128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following Schrodinger-Newton problem: -epsilon(2)Delta u + V(x)u = 1/8 pi epsilon(2) (integral(R3) u(2)(xi)/vertical bar x - xi vertical bar d xi)u, x is an element of R-3. For epsilon small enough, we prove the non-degeneracy of the positive solution to the above problem, that is, the corresponding linear operator L-epsilon(eta) = -epsilon(2)Delta eta(x) + V(x)eta(x) - 1/8 pi epsilon(2) (integral(R3)u(epsilon)(2)(xi)/vertical bar x - xi vertical bar d xi) eta(x) - 1/4 pi epsilon(2) (integral(R3)u(epsilon)(xi)eta(xi)/vertical bar x - xi vertical bar d xi)u(epsilon)(x) is non-degenerate, i.e., L-epsilon (eta(epsilon)) = 0 double right arrow eta(epsilon) = 0 for small epsilon > 0. The main tools are the local Pohozaev identities and the blow-up analysis. This may be the first non-degeneracy result on the peak solutions to the Schrodinger-Newton system.
引用
收藏
页码:447 / 460
页数:14
相关论文
共 50 条
  • [21] Uniqueness of positive solutions with concentration for the Schrodinger-Newton problem
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [22] Multiple positive solutions for a Schrodinger-Newton system with sign-changing potential
    Lei, Chun-Yu
    Liu, Gao-Sheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (03) : 631 - 640
  • [23] On some generalizations of Newton non-degeneracy for hypersurface singularities
    Kerner, Dmitry
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 49 - 73
  • [24] Spherically-symmetric solutions of the Schrodinger-Newton equations
    Moroz, IM
    Penrose, R
    Tod, P
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2733 - 2742
  • [25] INVERTIBLE POLYNOMIAL MAPPINGS VIA NEWTON NON-DEGENERACY
    Chen, Ying
    Dias, Luis Renato G.
    Takeuchi, Kiyoshi
    Tibar, Mihai
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (05) : 1807 - 1822
  • [26] STATIONARY SOLUTIONS OF THE SCHRODINGER-NEWTON MODEL - AN ODE APPROACH
    Choquard, Philippe
    Stubbe, Joachim
    Vuffray, Marc
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (7-8) : 665 - 679
  • [27] Uniqueness and non-degeneracy for a nuclear nonlinear Schrodinger equation
    Lewin, Mathieu
    Nodari, Simona Rota
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04): : 673 - 698
  • [28] NON-DEGENERACY OF GROUND-STATE OF SCHRODINGER OPERATORS
    GOELDEN, HW
    MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (03) : 239 - 247
  • [29] Schrodinger-Newton Model with a Background
    Mendonca, Jose Tito
    SYMMETRY-BASEL, 2021, 13 (06):
  • [30] MULTI-PEAK SOLUTIONS FOR MAGNETIC NLS EQUATIONS WITHOUT NON-DEGENERACY CONDITIONS
    Cingolani, Silvia
    Jeanjean, Louis
    Secchi, Simone
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) : 653 - 675