Complete sets of commuting observables of Greenberger-Horne-Zeilinger states

被引:4
|
作者
Ruan, MQ [1 ]
Zeng, JY
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 05期
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.70.052113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Complete sets of commuting observables (CSCOs) of the form Sigma(N)=Pi(i=1)(N)sigma(ialphai) (alpha(i)=x,y,z) for an N-qubit system are extracted by a simple graphic approach. One can construct 2x3(N) sets of operators, each set consisting of K-N commuting Sigma(N), K-N=2(N-1)+1 for even N, and 2(N-1) for odd N. Any N functional-independent operators among the K-N operators may be adopted as a CSCO, whose simultaneous eigenstates (SEs) span an orthonormal basis of N-qubit space. These SEs have reduced density matrix of rank 2 and can be reduced to the Greenberger-Horne-Zeilinger (GHZ) state form of Eq. (2) in suitable representations. The all-versus-nothing demolition of the elements of reality holds for each basis of the form of Eq. (2) for N-qubit (Ngreater than or equal to3) systems. Sigma(N) may be considered as the infinitesimal operator of rotational operator R(alpha(1),alpha(2),...alpha(N))=Pi(i=1)(N)exp[-ipisigma(ialphai)/2] , whose eigenvalue (signature) r=e(-ipialpha), or signature exponent alpha, may be equivalently used for characterizing each basis.
引用
收藏
页码:052113 / 1
页数:5
相关论文
共 50 条
  • [31] Multisetting Greenberger-Horne-Zeilinger theorem
    Ryu, Junghee
    Lee, Changhyoup
    Yin, Zhi
    Rahaman, Ramij
    Angelakis, Dimitris G.
    Lee, Jinhyoung
    Zukowski, Marek
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [32] Greenberger-Horne-Zeilinger States and Few-Body Hamiltonians
    Facchi, Paolo
    Florio, Giuseppe
    Pascazio, Saverio
    Pepe, Francesco V.
    PHYSICAL REVIEW LETTERS, 2011, 107 (26)
  • [33] Distillation of Greenberger-Horne-Zeilinger states by selective information manipulation
    Cohen, O
    Brun, TA
    PHYSICAL REVIEW LETTERS, 2000, 84 (25) : 5908 - 5911
  • [34] Probabilistic quantum cloning via Greenberger-Horne-Zeilinger states
    Zhang, CW
    Li, CF
    Wang, ZY
    Guo, GC
    PHYSICAL REVIEW A, 2000, 62 (04): : 8
  • [35] Macroscopic Greenberger-Horne-Zeilinger and W states in flux qubits
    Kim, Mun Dae
    Cho, Sam Young
    PHYSICAL REVIEW B, 2008, 77 (10)
  • [36] Quantum secret sharing based on Greenberger-Horne-Zeilinger states
    Guo, FZ
    Gao, F
    Wen, QY
    ICCC2004: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION VOL 1AND 2, 2004, : 1043 - 1047
  • [37] Greenberger-Horne-Zeilinger paradoxes for many qudits
    Cerf, NJ
    Massar, S
    Pironio, S
    PHYSICAL REVIEW LETTERS, 2002, 89 (08) : 1 - 080402
  • [38] General proof of the Greenberger-Horne-Zeilinger theorem
    Chen, ZQ
    PHYSICAL REVIEW A, 2004, 70 (03): : 032109 - 1
  • [39] Variations on the theme of the Greenberger-Horne-Zeilinger proof
    Vaidman, L
    FOUNDATIONS OF PHYSICS, 1999, 29 (04) : 615 - 630
  • [40] A quantitative witness for Greenberger-Horne-Zeilinger entanglement
    Christopher Eltschka
    Jens Siewert
    Scientific Reports, 2