Multisetting Greenberger-Horne-Zeilinger theorem

被引:17
|
作者
Ryu, Junghee [1 ]
Lee, Changhyoup [2 ]
Yin, Zhi [1 ]
Rahaman, Ramij [1 ,3 ]
Angelakis, Dimitris G. [2 ,4 ]
Lee, Jinhyoung [5 ]
Zukowski, Marek [1 ]
机构
[1] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Allahabad, Dept Math, Allahabad 211002, Uttar Pradesh, India
[4] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Crete, Greece
[5] Hanyang Univ, Dept Phys, Seoul 133791, South Korea
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 02期
基金
新加坡国家研究基金会; 欧洲研究理事会;
关键词
QUANTUM ENTANGLEMENT;
D O I
10.1103/PhysRevA.89.024103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a generalized Greenberger-Horne-Zeilinger (GHZ) theorem, which involves more than two local measurement settings for some parties, and cannot be reduced to one with less settings. Our results hold for an odd number of parties. We use a set of observables, which are incompatible but share a common eigenstate, here a GHZ state. Such observables are called concurrent. The idea is illustrated with an example of a three-qutrit system and then generalized to systems of higher dimensions, and more parties. The GHZ paradoxes can lead to, e.g., secret sharing protocols.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Multisetting Greenberger-Horne-Zeilinger paradoxes
    Tang, Weidong
    Yu, Sixia
    Oh, C. H.
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [2] General proof of the Greenberger-Horne-Zeilinger theorem
    Chen, ZQ
    PHYSICAL REVIEW A, 2004, 70 (03): : 032109 - 1
  • [3] Greenberger-Horne-Zeilinger theorem for N qudits
    Ryu, Junghee
    Lee, Changhyoup
    Zukowski, Marek
    Lee, Jinhyoung
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [4] Hardy's theorem for Greenberger-Horne-Zeilinger states
    Wu, XH
    Zong, HS
    Pang, HR
    PHYSICS LETTERS A, 2000, 276 (5-6) : 221 - 224
  • [5] Greenberger-Horne-Zeilinger theorem cannot be extended to a Bell state
    Chen, ZQ
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [6] NMR Greenberger-Horne-Zeilinger states
    Laflamme, R
    Knill, E
    Zurek, WH
    Catasti, P
    Mariappan, SVS
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1941 - 1947
  • [7] 4 PHOTON INTERFERENCE EXPERIMENT FOR THE TESTING OF THE GREENBERGER-HORNE-ZEILINGER THEOREM
    SHIH, YH
    RUBIN, MH
    PHYSICS LETTERS A, 1993, 182 (01) : 16 - 22
  • [8] Greenberger-Horne-Zeilinger paradoxes for many qudits
    Cerf, NJ
    Massar, S
    Pironio, S
    PHYSICAL REVIEW LETTERS, 2002, 89 (08) : 1 - 080402
  • [9] Variations on the theme of the Greenberger-Horne-Zeilinger proof
    Vaidman, L
    FOUNDATIONS OF PHYSICS, 1999, 29 (04) : 615 - 630
  • [10] Optimal Verification of Greenberger-Horne-Zeilinger States
    Li, Zihao
    Han, Yun-Guang
    Zhu, Huangjun
    PHYSICAL REVIEW APPLIED, 2020, 13 (05)