Complete sets of commuting observables of Greenberger-Horne-Zeilinger states

被引:4
|
作者
Ruan, MQ [1 ]
Zeng, JY
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 05期
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.70.052113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Complete sets of commuting observables (CSCOs) of the form Sigma(N)=Pi(i=1)(N)sigma(ialphai) (alpha(i)=x,y,z) for an N-qubit system are extracted by a simple graphic approach. One can construct 2x3(N) sets of operators, each set consisting of K-N commuting Sigma(N), K-N=2(N-1)+1 for even N, and 2(N-1) for odd N. Any N functional-independent operators among the K-N operators may be adopted as a CSCO, whose simultaneous eigenstates (SEs) span an orthonormal basis of N-qubit space. These SEs have reduced density matrix of rank 2 and can be reduced to the Greenberger-Horne-Zeilinger (GHZ) state form of Eq. (2) in suitable representations. The all-versus-nothing demolition of the elements of reality holds for each basis of the form of Eq. (2) for N-qubit (Ngreater than or equal to3) systems. Sigma(N) may be considered as the infinitesimal operator of rotational operator R(alpha(1),alpha(2),...alpha(N))=Pi(i=1)(N)exp[-ipisigma(ialphai)/2] , whose eigenvalue (signature) r=e(-ipialpha), or signature exponent alpha, may be equivalently used for characterizing each basis.
引用
收藏
页码:052113 / 1
页数:5
相关论文
共 50 条
  • [21] Multisetting Greenberger-Horne-Zeilinger paradoxes
    Tang, Weidong
    Yu, Sixia
    Oh, C. H.
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [22] Asymmetric multipartite Greenberger-Horne-Zeilinger states and Bell inequalities
    Gosal, D
    Kaszlikowski, D
    Kwek, LC
    Zukowski, M
    Oh, CH
    PHYSICAL REVIEW A, 2004, 70 (04): : 042106 - 1
  • [23] ENTANGLEMENT CLASSIFICATION OF RELAXED GREENBERGER-HORNE-ZEILINGER SYMMETRIC STATES
    Jung, Eylee
    Park, Daekil
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (11-12) : 937 - 948
  • [24] Generating Greenberger-Horne-Zeilinger states using multiport splitters
    Bhatti, Daniel
    Barz, Stefanie
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [25] An Anonymous Surveying Protocol via Greenberger-Horne-Zeilinger States
    Naseri, Mosayeb
    Gong, Li-Hua
    Houshmand, Monireh
    Matin, Laleh Farhang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (10) : 4436 - 4444
  • [26] Generation of Path-Encoded Greenberger-Horne-Zeilinger States
    Bergamasco, N.
    Menotti, M.
    Sipe, J. E.
    Liscidini, M.
    PHYSICAL REVIEW APPLIED, 2017, 8 (05):
  • [27] Classifying entanglement in the superposition of Greenberger-Horne-Zeilinger and W states
    Wang, Xuan
    Shi, Xian
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [28] Greenberger-Horne-Zeilinger Paradoxes from Qudit Graph States
    Tang, Weidong
    Yu, Sixia
    Oh, C. H.
    PHYSICAL REVIEW LETTERS, 2013, 110 (10)
  • [29] An Anonymous Surveying Protocol via Greenberger-Horne-Zeilinger States
    Mosayeb Naseri
    Li-Hua Gong
    Monireh Houshmand
    Laleh Farhang Matin
    International Journal of Theoretical Physics, 2016, 55 : 4436 - 4444
  • [30] Separability of three qubit Greenberger-Horne-Zeilinger diagonal states
    Han, Kyung Hoon
    Kye, Seung-Hyeok
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (14)