Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models

被引:4
|
作者
Alenlov, Johan [1 ]
Olsson, Jimmy [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Smoothing methods; Approximation algorithms; Markov processes; Signal processing algorithms; Monte Carlo methods; Hidden Markov models; Biological system modeling; Sequential Monte Carlo methods; state-space models; marginal smoothing; PaRIS; particle filters; state estimation; HIDDEN MARKOV-MODELS; MONTE-CARLO METHODS; ALGORITHM; FILTER;
D O I
10.1109/TSP.2019.2941066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
引用
收藏
页码:5571 / 5582
页数:12
相关论文
共 50 条
  • [1] An efficient particle-based online EM algorithm for general state-space models
    Olsson, Jimmy
    Westerborn, Johan
    IFAC PAPERSONLINE, 2015, 48 (28): : 963 - 968
  • [2] EFFICIENT PARTICLE-BASED ONLINE SMOOTHING IN GENERAL HIDDEN MARKOV MODELS
    Westerborn, Johan
    Olsson, Jimmy
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] ON THE TWO-FILTER APPROXIMATIONS OF MARGINAL SMOOTHING DISTRIBUTIONS IN GENERAL STATE-SPACE MODELS
    Thi Ngoc Minh Nguyen
    Le Corff, Sylvain
    Moulines, Eric
    ADVANCES IN APPLIED PROBABILITY, 2018, 50 (01) : 154 - 177
  • [4] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Jimmy Olsson
    Johan Westerborn Alenlöv
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 545 - 576
  • [5] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Olsson, Jimmy
    Westerborn Alenlov, Johan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (02) : 545 - 576
  • [6] Efficient particle-based online smoothing in general hidden Markov models: The PaRIS algorithm
    Olsson, Jimmy
    Westerborn, Johan
    BERNOULLI, 2017, 23 (03) : 1951 - 1996
  • [7] Monte Carlo fixed-lag smoothing in state-space models
    Cuzol, A.
    Memin, E.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (03) : 633 - 643
  • [8] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170
  • [9] Smoothing algorithms for state-space models
    Briers, Mark
    Doucet, Arnaud
    Maskell, Simon
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (01) : 61 - 89
  • [10] Particle Based Smoothed Marginal MAP Estimation for General State Space Models
    Saha, Saikat
    Mandal, Pranab Kumar
    Bagchi, Arunabha
    Boers, Yvo
    Driessen, Johannes N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (02) : 264 - 273