Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models

被引:3
|
作者
Olsson, Jimmy [1 ]
Westerborn Alenlov, Johan [1 ]
机构
[1] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
Parameter estimation; Recursive maximum likelihood; State-space models; Tangent filter; Sequential Monte Carlo methods; Central limit theorem; Particle filters; MAXIMUM-LIKELIHOOD; STABILITY; ALGORITHM; CONVERGENCE;
D O I
10.1007/s10463-018-0698-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a novel algorithm for efficient online estimation of the filter derivatives in general hidden Markov models. The algorithm, which has a linear computational complexity and very limited memory requirements, is furnished with a number of convergence results, including a central limit theorem with an asymptotic variance that can be shown to be uniformly bounded in time. Using the proposed filter derivative estimator, we design a recursive maximum likelihood algorithm updating the parameters according the gradient of the one-step predictor log-likelihood. The efficiency of this online parameter estimation scheme is illustrated in a simulation study.
引用
收藏
页码:545 / 576
页数:32
相关论文
共 50 条
  • [1] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Jimmy Olsson
    Johan Westerborn Alenlöv
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 545 - 576
  • [2] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145
  • [3] Nested particle filters for online parameter estimation in discrete-time state-space Markov models
    Crisan, Dan
    Miguez, Joaquin
    BERNOULLI, 2018, 24 (4A) : 3039 - 3086
  • [4] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [5] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [6] An Introduction to Twisted Particle Filters and Parameter Estimation in Non-Linear State-Space Models
    Ala-Luhtala, Juha
    Whiteley, Nick
    Heine, Kari
    Piche, Robert
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (18) : 4875 - 4890
  • [7] Evolution strategies based particle filters for state and parameter estimation of nonlinear models
    Uosaki, K
    Kimura, Y
    Hatanaka, T
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 884 - 890
  • [8] Convolution Particle Filter for Parameter Estimation in General State-Space Models
    Campillo, Fabien
    Rossi, Vivien
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2009, 45 (03) : 1063 - 1072
  • [9] Parameter estimation in general state-space models using particle methods
    Doucet, A
    Tadic, VB
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) : 409 - 422
  • [10] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422