Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models

被引:4
|
作者
Alenlov, Johan [1 ]
Olsson, Jimmy [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Smoothing methods; Approximation algorithms; Markov processes; Signal processing algorithms; Monte Carlo methods; Hidden Markov models; Biological system modeling; Sequential Monte Carlo methods; state-space models; marginal smoothing; PaRIS; particle filters; state estimation; HIDDEN MARKOV-MODELS; MONTE-CARLO METHODS; ALGORITHM; FILTER;
D O I
10.1109/TSP.2019.2941066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
引用
收藏
页码:5571 / 5582
页数:12
相关论文
共 50 条
  • [21] Filtering and smoothing of state vector for diffuse state-space models
    Koopman, SJ
    Durbin, J
    JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (01) : 85 - 98
  • [22] Efficient Kalman smoothing for harmonic state-space models
    Barber, David
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2979 - 2982
  • [23] A General State-Space Formulation for Online Scheduling
    Gupta, Dhruv
    Maravelias, Christos T.
    PROCESSES, 2017, 5 (04):
  • [24] PARTICLE FILTERING FOR MULTIVARIATE STATE-SPACE MODELS
    Djuric, Petar M.
    Bugallo, Monica F.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 373 - 376
  • [25] Simulation smoothing for state-space models: A computational efficiency analysis
    McCausland, William J.
    Miller, Shirley
    Pelletier, Denis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 199 - 212
  • [26] Robust Smoothing for State-Space Models with Unknown Noise Statistics
    Dehghannasiri, Roozbeh
    Qian, Xiaoning
    Dougherty, Edward R.
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 1024 - 1028
  • [27] Switching state-space models - Likelihood function, filtering and smoothing
    Billio, M
    Monfort, A
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 68 (01) : 65 - 103
  • [28] ADAPTIVE APPROXIMATE FILTERING OF STATE-SPACE MODELS
    Dedecius, Kamil
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2191 - 2195
  • [29] Extraction of Airways with Probabilistic State-Space Models and Bayesian Smoothing
    Selvan, Raghavendra
    Petersen, Jens
    Pedersen, Jesper H.
    de Bruijne, Marleen
    GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, COMPUTATIONAL ANATOMY AND IMAGING GENETICS, 2017, 10551 : 53 - 63
  • [30] From general state-space to VARMAX models
    Casals, J.
    Garcia-Hiernaux, A.
    Jerez, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (05) : 924 - 936