Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models

被引:4
|
作者
Alenlov, Johan [1 ]
Olsson, Jimmy [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Smoothing methods; Approximation algorithms; Markov processes; Signal processing algorithms; Monte Carlo methods; Hidden Markov models; Biological system modeling; Sequential Monte Carlo methods; state-space models; marginal smoothing; PaRIS; particle filters; state estimation; HIDDEN MARKOV-MODELS; MONTE-CARLO METHODS; ALGORITHM; FILTER;
D O I
10.1109/TSP.2019.2941066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
引用
收藏
页码:5571 / 5582
页数:12
相关论文
共 50 条
  • [41] Monte Carlo approximations for general state-space models
    Hurzeler, M
    Kunsch, HR
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 175 - 193
  • [42] State-space adaptive exploration for explainable particle swarm optimization
    Alimohammadi, Mehdi
    Akbarzadeh-T, Mohammad-R.
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 94
  • [43] Fixed-lag maximum likelihood FIR smoother for state-space models
    Ahn, Choon Ki
    Kim, Pyung Soo
    IEICE ELECTRONICS EXPRESS, 2008, 5 (01): : 11 - 16
  • [44] ESTIMATION, FILTERING, AND SMOOTHING IN STATE-SPACE MODELS WITH INCOMPLETELY SPECIFIED INITIAL CONDITIONS
    ANSLEY, CF
    KOHN, R
    ANNALS OF STATISTICS, 1985, 13 (04): : 1286 - 1316
  • [45] Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
    Finke, Axel
    Singh, Sumeetpal S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5982 - 5994
  • [46] FIR SMOOTHING OF DISCRETE-TIME STATE-SPACE MODELS WITH APPLICATIONS TO CLOCKS
    Ibarra-Manzano, Oscar
    Morales-Mendoza, Luis
    Shmaliy, Yuriy S.
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1800 - 1804
  • [47] Nested particle filters for online parameter estimation in discrete-time state-space Markov models
    Crisan, Dan
    Miguez, Joaquin
    BERNOULLI, 2018, 24 (4A) : 3039 - 3086
  • [48] Particle-based simulations of electrophoretic deposition with adaptive physics models
    Karnes, John J.
    Pascall, Andrew J.
    Rehbock, Christoph
    Ramesh, Vaijayanthi
    Worsley, Marcus A.
    Barcikowski, Stephan
    Lee, Elaine
    Giera, Brian
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 297
  • [50] Adaptive estimation of FCG using nonlinear state-space models
    Moussas, VC
    Katsikas, SK
    Lainiotis, DG
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (04) : 705 - 722