Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models

被引:4
|
作者
Alenlov, Johan [1 ]
Olsson, Jimmy [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Smoothing methods; Approximation algorithms; Markov processes; Signal processing algorithms; Monte Carlo methods; Hidden Markov models; Biological system modeling; Sequential Monte Carlo methods; state-space models; marginal smoothing; PaRIS; particle filters; state estimation; HIDDEN MARKOV-MODELS; MONTE-CARLO METHODS; ALGORITHM; FILTER;
D O I
10.1109/TSP.2019.2941066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
引用
收藏
页码:5571 / 5582
页数:12
相关论文
共 50 条
  • [31] Particle smoothing via Markov chain Monte Carlo in general state space models
    Gao, Meng
    Zhang, Hui
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2018, 9 (02) : 181 - 188
  • [32] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [33] ONLINE STRUCTURE SELECTION FOR MULTIVARIABLE STATE-SPACE MODELS
    VANOVERBEEK, AJM
    LJUNG, L
    AUTOMATICA, 1982, 18 (05) : 529 - 543
  • [34] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749
  • [36] Fast and Numerically Stable Particle-Based Online Additive Smoothing: The AdaSmooth Algorithm
    Mastrototaro, Alessandro
    Olsson, Jimmy
    Alenlov, Johan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 356 - 367
  • [37] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [38] SMOOTHING FIR FILTERING OF DISCRETE STATE-SPACE POLYNOMIAL SIGNAL MODELS
    Oscar, Ibarra-Manzano
    Yuriy S, Shmaliy
    Luis, Morales-Mendoza
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3504 - 3507
  • [39] Identification of Wiener state-space models utilizing Gaussian sum smoothing
    Cedeno, Angel L.
    Gonzalez, Rodrigo A.
    Carvajal, Rodrigo
    Aguero, Juan C.
    AUTOMATICA, 2024, 166
  • [40] Adaptive kernels in approximate filtering of state-space models
    Dedecius, Kamil
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (06) : 938 - 952