On the non-asymptotic concentration of heteroskedastic Wishart-type matrix

被引:6
|
作者
Cai, T. Tony [1 ]
Han, Rungang [2 ]
Zhang, Anru R. [2 ,3 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Duke Univ, Durham, NC 27706 USA
[3] Univ Wisconsin, Madison, WI USA
来源
关键词
concentration inequality; nonasymptotic bound; random matrix; Wishart matrix; BOUNDS; RECONSTRUCTION; INEQUALITIES; CONVERGENCE; VALUES; NORM;
D O I
10.1214/22-EJP758
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on the non-asymptotic concentration of the heteroskedastic Wishart-type matrices. Suppose Z is a p(1)-by-p(2) random matrix and Z(ij) similar to N(0, sigma(2)(ij)) independently, we prove the expected spectral norm of Wishart matrix deviations (i.e., E parallel to ZZ(T) - EZZ(T)parallel to) is upper bounded by (1 + epsilon) {2 sigma(C sigma R) + sigma(2)(C) + C sigma(R sigma)* root log(p(1) boolean AND p(2)) +C-sigma*(2) log(p(1) boolean AND p(2))}, where sigma(2)(C) := max(j) Sigma(p1)(i=1) sigma(2)(ij), sigma(2)(R) := max(i) Sigma(p2)(j=1) sigma(2)(ij) and sigma(2)(*) := max(i,j) sigma(2)(ij). A minimax lower bound is developed that matches this upper bound. Then, we derive the concentration inequalities, moments, and tail bounds for the heteroskedastic Wishart-type matrix under more general distributions, such as sub-Gaussian and heavy-tailed distributions. Next, we consider the cases where Z has homoskedastic columns or rows (i.e., sigma(ij) approximate to sigma(i) or sigma(ij) approximate to sigma(j)) and derive the rate-optimal Wishart-type concentration bounds. Finally, we apply the developed tools to identify the sharp signal-to-noise ratio threshold for consistent clustering in the heteroskedastic clustering problem.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] The asymptotic infinitesimal distribution of a real Wishart random matrix
    Mingo, James A.
    Vazquez-Becerra, Josue
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [32] Tyler?s and Maronna?s M-estimators: Non-asymptotic concentration results
    Romanov, Elad
    Kur, Gil
    Nadler, Boaz
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [33] Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm
    Paul, Anik Kumar
    Mahindrakar, Arun D.
    Kalaimani, Rachel K.
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2397 - 2402
  • [34] Non-Asymptotic and Asymptotic Analyses on Markov Chains in Several Problems
    Hayashi, Masahito
    Watanabe, Shun
    2014 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2014, : 328 - 337
  • [35] Non-Asymptotic Results for Cornish–Fisher Expansions*
    Ulyanov V.V.
    Aoshima M.
    Fujikoshi Y.
    Journal of Mathematical Sciences, 2016, 218 (3) : 363 - 368
  • [36] DEFECTIVE NON-ASYMPTOTIC VALUES OF MEROMORPHIC FUNCTIONS
    GOLDBERG, AA
    DOKLADY AKADEMII NAUK SSSR, 1966, 171 (02): : 254 - &
  • [37] Non-asymptotic approach to varying coefficient model
    Klopp, Olga
    Pensky, Marianna
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 454 - 479
  • [38] Non-Asymptotic Error Bounds for Bidirectional GANs
    Liu, Shiao
    Yang, Yunfei
    Huang, Jian
    Jiao, Yuling
    Wang, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] Eigenvalue distributions of Wishart-type random matrices with application to the performance analysis of MIMO MRC systems
    Maaref, Amine
    Aiessa, Sonia
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007, 6 (07) : 2678 - 2689
  • [40] On the genericity of some non-asymptotic dynamical properties
    Ageev, ON
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (01) : 173 - 174