Tyler's and Maronna's M-estimators, as well as their regularized variants, are pop-ular robust methods to estimate the scatter or covariance matrix of a multivariate distribution. In this work, we study the non-asymptotic behavior of these estimators, for data sampled from a distribution that satisfies one of the following properties: (1) independent sub-Gaussian entries, up to a linear transformation; (2) log-concave distributions; (3) distributions satisfying a convex concentration property. Our main contribution is the derivation of tight non-asymptotic concentration bounds of these M-estimators around a suitably scaled version of the data sample covariance matrix. Prior to our work, non-asymptotic bounds were derived only for Elliptical and Gaussian distributions. Our proof uses a variety of tools from non asymptotic random matrix theory and high dimensional geometry. Finally, we illustrate the utility of our results on two examples of practical interest: sparse covariance and sparse precision matrix estimation.(c) 2023 Elsevier Inc. All rights reserved.
机构:
Supelec, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
Univ Paris 11, Orsay, FranceSupelec, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
Chitour, Yacine
Couillet, Romain
论文数: 0引用数: 0
h-index: 0
机构:
Supelec, Dept Telecommun, F-91192 Gif Sur Yvette, FranceSupelec, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
Couillet, Romain
Pascal, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Supelec, SONDRA Lab, F-91192 Gif Sur Yvette, FranceSupelec, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
机构:
Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT3 9DT, Antrim, North IrelandHong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon 999077, Hong Kong, Peoples R China
Morales-Jimenez, David
McKay, Matthew R.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon 999077, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon 999077, Hong Kong, Peoples R China
McKay, Matthew R.
Couillet, Romain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, GIPSA Lab, F-91192 St Martin Dheres, France
Univ Paris Saclay, Cent Supelec, L2S, F-91192 Gif Sur Yvette, FranceHong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon 999077, Hong Kong, Peoples R China