On the non-asymptotic concentration of heteroskedastic Wishart-type matrix

被引:6
|
作者
Cai, T. Tony [1 ]
Han, Rungang [2 ]
Zhang, Anru R. [2 ,3 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Duke Univ, Durham, NC 27706 USA
[3] Univ Wisconsin, Madison, WI USA
来源
关键词
concentration inequality; nonasymptotic bound; random matrix; Wishart matrix; BOUNDS; RECONSTRUCTION; INEQUALITIES; CONVERGENCE; VALUES; NORM;
D O I
10.1214/22-EJP758
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on the non-asymptotic concentration of the heteroskedastic Wishart-type matrices. Suppose Z is a p(1)-by-p(2) random matrix and Z(ij) similar to N(0, sigma(2)(ij)) independently, we prove the expected spectral norm of Wishart matrix deviations (i.e., E parallel to ZZ(T) - EZZ(T)parallel to) is upper bounded by (1 + epsilon) {2 sigma(C sigma R) + sigma(2)(C) + C sigma(R sigma)* root log(p(1) boolean AND p(2)) +C-sigma*(2) log(p(1) boolean AND p(2))}, where sigma(2)(C) := max(j) Sigma(p1)(i=1) sigma(2)(ij), sigma(2)(R) := max(i) Sigma(p2)(j=1) sigma(2)(ij) and sigma(2)(*) := max(i,j) sigma(2)(ij). A minimax lower bound is developed that matches this upper bound. Then, we derive the concentration inequalities, moments, and tail bounds for the heteroskedastic Wishart-type matrix under more general distributions, such as sub-Gaussian and heavy-tailed distributions. Next, we consider the cases where Z has homoskedastic columns or rows (i.e., sigma(ij) approximate to sigma(i) or sigma(ij) approximate to sigma(j)) and derive the rate-optimal Wishart-type concentration bounds. Finally, we apply the developed tools to identify the sharp signal-to-noise ratio threshold for consistent clustering in the heteroskedastic clustering problem.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] A Tutorial on the Non-Asymptotic Theory of System Identification
    Ziemann, Ingvar
    Tsiamis, Anastasios
    Lee, Bruce
    Jedra, Yassir
    Matni, Nikolai
    Pappas, George J.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 8921 - 8939
  • [42] Non-Asymptotic Pure Exploration by Solving Games
    Degenne, Remy
    Koolen, Wouter M.
    Menard, Pierre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [43] Application of non-asymptotic models for the NPP system
    Antonov, AV
    Volnikov, IS
    Dagaev, AV
    SAFETY AND RELIABILITY, VOLS 1 & 2, 1999, : 969 - 974
  • [44] Non-asymptotic analysis of tangent space perturbation
    Kaslovsky, Daniel N.
    Meyer, Francois G.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (02) : 134 - 187
  • [45] Non-Asymptotic Confidence Sets for Circular Means
    Hotz, Thomas
    Kelma, Florian
    Wieditz, Johannes
    ENTROPY, 2016, 18 (10)
  • [46] On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
    Mou, Wenlong
    Li, Chris Junchi
    Wainwright, Martin J.
    Bartlett, Peter L.
    Jordan, Michael I.
    CONFERENCE ON LEARNING THEORY, VOL 125, 2020, 125
  • [47] Optimal Non-Asymptotic Bounds for the Sparse β Model
    Yang, Xiaowei
    Pan, Lu
    Cheng, Kun
    Liu, Chao
    MATHEMATICS, 2023, 11 (22)
  • [48] Optimal non-asymptotic concentration of centered empirical relative entropy in the high-dimensional regime
    Li, Yanpeng
    Tian, Boping
    STATISTICS & PROBABILITY LETTERS, 2023, 197
  • [49] QCD traveling waves at non-asymptotic energies
    Marquet, C
    Peschanski, R
    Soyez, G
    PHYSICS LETTERS B, 2005, 628 (3-4) : 239 - 249
  • [50] NON-ASYMPTOTIC THEORY OF COLLISIONLESS RECONNECTING MODES
    ANTONSEN, TM
    COPPI, B
    PHYSICS LETTERS A, 1981, 81 (06) : 335 - 338