On the non-asymptotic concentration of heteroskedastic Wishart-type matrix

被引:6
|
作者
Cai, T. Tony [1 ]
Han, Rungang [2 ]
Zhang, Anru R. [2 ,3 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Duke Univ, Durham, NC 27706 USA
[3] Univ Wisconsin, Madison, WI USA
来源
关键词
concentration inequality; nonasymptotic bound; random matrix; Wishart matrix; BOUNDS; RECONSTRUCTION; INEQUALITIES; CONVERGENCE; VALUES; NORM;
D O I
10.1214/22-EJP758
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on the non-asymptotic concentration of the heteroskedastic Wishart-type matrices. Suppose Z is a p(1)-by-p(2) random matrix and Z(ij) similar to N(0, sigma(2)(ij)) independently, we prove the expected spectral norm of Wishart matrix deviations (i.e., E parallel to ZZ(T) - EZZ(T)parallel to) is upper bounded by (1 + epsilon) {2 sigma(C sigma R) + sigma(2)(C) + C sigma(R sigma)* root log(p(1) boolean AND p(2)) +C-sigma*(2) log(p(1) boolean AND p(2))}, where sigma(2)(C) := max(j) Sigma(p1)(i=1) sigma(2)(ij), sigma(2)(R) := max(i) Sigma(p2)(j=1) sigma(2)(ij) and sigma(2)(*) := max(i,j) sigma(2)(ij). A minimax lower bound is developed that matches this upper bound. Then, we derive the concentration inequalities, moments, and tail bounds for the heteroskedastic Wishart-type matrix under more general distributions, such as sub-Gaussian and heavy-tailed distributions. Next, we consider the cases where Z has homoskedastic columns or rows (i.e., sigma(ij) approximate to sigma(i) or sigma(ij) approximate to sigma(j)) and derive the rate-optimal Wishart-type concentration bounds. Finally, we apply the developed tools to identify the sharp signal-to-noise ratio threshold for consistent clustering in the heteroskedastic clustering problem.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] A non-asymptotic model of dynamics of honeycomb lattice-type plates
    Cielecka, Iwona
    Jedrysiak, Jaroslaw
    JOURNAL OF SOUND AND VIBRATION, 2006, 296 (1-2) : 130 - 149
  • [22] A non-asymptotic theory for model selection
    Massart, P
    European Congress of Mathematics, 2005, : 309 - 323
  • [23] On non-asymptotic observation of nonlinear systems
    Reger, Johann
    Ramirez, Hebertt Sira
    Fliess, Michel
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 4219 - 4224
  • [24] Asymptotic and Non-asymptotic Results in the Approximation by Bernstein Polynomials
    José A. Adell
    Daniel Cárdenas-Morales
    Results in Mathematics, 2022, 77
  • [25] Non-asymptotic bounds for autoregressive approximation
    Goldenshluger, A
    Zeevi, A
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 304 - 304
  • [26] A non-asymptotic approach to local modelling
    Roll, J
    Nazin, A
    Ljung, L
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 638 - 643
  • [27] Non-asymptotic tests of model performance
    Sylvain Chassang
    Economic Theory, 2009, 41 : 495 - 514
  • [28] Discrepancy behaviour in the non-asymptotic regime
    Schlier, C
    APPLIED NUMERICAL MATHEMATICS, 2004, 50 (02) : 227 - 238
  • [29] Non-asymptotic tests of model performance
    Chassang, Sylvain
    ECONOMIC THEORY, 2009, 41 (03) : 495 - 514
  • [30] Non-asymptotic Coded Slotted ALOHA
    Fereydounian, Mohammad
    Chen, Xingran
    Hassani, Hamed
    Bidokhti, Shirin Saeedi
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 111 - 115