Monodromy of Hamiltonian systems with complexity 1 torus actions

被引:8
|
作者
Efstathiou, K. [1 ]
Martynchuk, N. [1 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, POB 407, NL-9700 AK Groningen, Netherlands
基金
中国国家自然科学基金;
关键词
Principal bundle; Curvature form; Integrable Hamiltonian system; Monodromy; FOCUS-FOCUS SINGULARITIES; POINTS; NEIGHBORHOODS;
D O I
10.1016/j.geomphys.2016.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the monodromy of n-torus bundles in n degree of freedom integrable Hamiltonian systems with a complexity 1 torus action, that is, a Hamiltonian Tn-1 action. We show that orbits with T-1 isotropy are associated to non-trivial monodromy and we give a simple formula for computing the monodromy matrix in this case. In the case of 2 degree of freedom systems such orbits correspond to fixed points of the T-1 action. Thus we demonstrate that, given a Tn-1 invariant Hamiltonian H, it is the Tn-1 action, rather than H, that determines monodromy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [21] Decomposition theorem and torus actions of complexity one
    Marta Agustin Vicente
    Kevin Langlois
    European Journal of Mathematics, 2021, 7 : 163 - 204
  • [22] Decomposition theorem and torus actions of complexity one
    Agustin Vicente, Marta
    Langlois, Kevin
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (01) : 163 - 204
  • [23] Manifestation of Hamiltonian Monodromy in Nonlinear Wave Systems
    Assemat, E.
    Michel, C.
    Picozzi, A.
    Jauslin, H. R.
    Sugny, D.
    PHYSICAL REVIEW LETTERS, 2011, 106 (01)
  • [24] On intersection cohomology with torus actions of complexity one
    Agustin Vicente, Marta
    Langlois, Kevin
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 163 - 186
  • [25] On intersection cohomology with torus actions of complexity one
    Marta Agustin Vicente
    Kevin Langlois
    Revista Matemática Complutense, 2018, 31 : 163 - 186
  • [26] The Nash problem for torus actions of complexity one
    Bourqui, David
    Langlois, Kevin
    Mourtada, Hussein
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (818): : 165 - 214
  • [27] Umbilical torus bifurcations in Hamiltonian systems
    Broer, HW
    Hanssmann, H
    You, JG
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) : 233 - 262
  • [28] Classification of Hamiltonian torus actions with two-dimensional quotients
    Karshon, Yael
    Tolman, Susan
    GEOMETRY & TOPOLOGY, 2014, 18 (02) : 669 - 716
  • [29] Convexity for Hamiltonian torus actions on b-symplectic manifolds
    Guillemin, Victor
    Miranda, Eva
    Pires, Ana Rita
    Scott, Geoffrey
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 363 - 377
  • [30] Examples of non-Kähler Hamiltonian torus actions
    Susan Tolman
    Inventiones mathematicae, 1998, 131 : 299 - 310