Monodromy of Hamiltonian systems with complexity 1 torus actions

被引:8
|
作者
Efstathiou, K. [1 ]
Martynchuk, N. [1 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, POB 407, NL-9700 AK Groningen, Netherlands
基金
中国国家自然科学基金;
关键词
Principal bundle; Curvature form; Integrable Hamiltonian system; Monodromy; FOCUS-FOCUS SINGULARITIES; POINTS; NEIGHBORHOODS;
D O I
10.1016/j.geomphys.2016.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the monodromy of n-torus bundles in n degree of freedom integrable Hamiltonian systems with a complexity 1 torus action, that is, a Hamiltonian Tn-1 action. We show that orbits with T-1 isotropy are associated to non-trivial monodromy and we give a simple formula for computing the monodromy matrix in this case. In the case of 2 degree of freedom systems such orbits correspond to fixed points of the T-1 action. Thus we demonstrate that, given a Tn-1 invariant Hamiltonian H, it is the Tn-1 action, rather than H, that determines monodromy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [41] Orbit Spaces of Equivariantly Formal Torus Actions of Complexity One
    Ayzenberg, Anton
    Masuda, Mikiya
    TRANSFORMATION GROUPS, 2025, 30 (01) : 19 - 52
  • [42] TORUS ACTIONS OF COMPLEXITY ONE IN NON-GENERAL POSITION
    Ayzenberg, Anton
    Cherepanov, Vladislav
    OSAKA JOURNAL OF MATHEMATICS, 2021, 58 (04) : 839 - 853
  • [43] Orbit Spaces of Equivariantly Formal Torus Actions of Complexity OneOrbit spaces of equivariantly formal torus actions of complexity oneA. Ayzenberg, M. Masuda
    Anton Ayzenberg
    Mikiya Masuda
    Transformation Groups, 2025, 30 (1) : 19 - 52
  • [44] On completely integrable systems with local torus actions
    Kogan, M
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (06) : 543 - 553
  • [45] On Completely Integrable Systems with Local Torus Actions
    Mikhail Kogan
    Annals of Global Analysis and Geometry, 1997, 15 : 543 - 553
  • [46] Hamiltonian Monodromy and Morse Theory
    N. Martynchuk
    H. W. Broer
    K. Efstathiou
    Communications in Mathematical Physics, 2020, 375 : 1373 - 1392
  • [47] DEGENERATION OF HAMILTONIAN MONODROMY CYCLES
    BATES, L
    ZOU, MR
    NONLINEARITY, 1993, 6 (02) : 313 - 335
  • [48] Hamiltonian monodromy as lattice defect
    Zhilinskii, B
    TOPOLOGY IN CONDENSED MATTER, 2006, 150 : 165 - 186
  • [49] Dynamical manifestations of Hamiltonian monodromy
    Delos, J. B.
    Dhont, G.
    Sadovskii, D. A.
    Zhilinskii, B. I.
    ANNALS OF PHYSICS, 2009, 324 (09) : 1953 - 1982
  • [50] Non-Hamiltonian monodromy
    Cushman, R
    Duistermaat, JJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 172 (01) : 42 - 58