Monodromy of Hamiltonian systems with complexity 1 torus actions

被引:8
|
作者
Efstathiou, K. [1 ]
Martynchuk, N. [1 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, POB 407, NL-9700 AK Groningen, Netherlands
基金
中国国家自然科学基金;
关键词
Principal bundle; Curvature form; Integrable Hamiltonian system; Monodromy; FOCUS-FOCUS SINGULARITIES; POINTS; NEIGHBORHOODS;
D O I
10.1016/j.geomphys.2016.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the monodromy of n-torus bundles in n degree of freedom integrable Hamiltonian systems with a complexity 1 torus action, that is, a Hamiltonian Tn-1 action. We show that orbits with T-1 isotropy are associated to non-trivial monodromy and we give a simple formula for computing the monodromy matrix in this case. In the case of 2 degree of freedom systems such orbits correspond to fixed points of the T-1 action. Thus we demonstrate that, given a Tn-1 invariant Hamiltonian H, it is the Tn-1 action, rather than H, that determines monodromy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [31] Recent advances in the monodromy theory of integrable Hamiltonian systems
    Martynchuk, N.
    Broer, H. W.
    Efstathiou, K.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (01): : 193 - 223
  • [32] Saddle Singularities of Complexity 1 of Integrable Hamiltonian Systems
    Oshemkov, A. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2011, 66 (02) : 60 - 69
  • [33] Fractional Hamiltonian monodromy
    Nekhoroshev, Nikolaii N.
    Sadovskii, Dmitrii A.
    Zhilinskii, Boris I.
    ANNALES HENRI POINCARE, 2006, 7 (06): : 1099 - 1211
  • [34] Fractional Hamiltonian Monodromy
    Nikolaií N. Nekhoroshev
    Dmitrií A. Sadovskií
    Boris I. Zhilinskií
    Annales Henri Poincaré, 2006, 7 : 1099 - 1211
  • [35] Periodic solutions of even Hamiltonian systems on the torus
    Thomas Bartsch
    Zhi-Qiang Wang
    Mathematische Zeitschrift, 1997, 224 : 65 - 76
  • [36] Periodic solutions of even Hamiltonian systems on the torus
    Bartsch, T
    Wang, ZQ
    MATHEMATISCHE ZEITSCHRIFT, 1997, 224 (01) : 65 - 76
  • [38] Conic reductions for Hamiltonian actions of U(2) and its maximal torus
    Roberto Paoletti
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2515 - 2563
  • [39] On the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions
    Herbig, Hans-Christian
    Iyengar, Srikanth B.
    Pflaum, Markus J.
    LETTERS IN MATHEMATICAL PHYSICS, 2009, 89 (02) : 101 - 113
  • [40] On the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions
    Hans-Christian Herbig
    Srikanth B. Iyengar
    Markus J. Pflaum
    Letters in Mathematical Physics, 2009, 89 : 101 - 113