Manifestation of Hamiltonian Monodromy in Nonlinear Wave Systems

被引:5
|
作者
Assemat, E. [1 ]
Michel, C. [1 ]
Picozzi, A. [1 ]
Jauslin, H. R. [1 ]
Sugny, D. [1 ]
机构
[1] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne ICB, UMR 5209, CNRS, F-21078 Dijon, France
关键词
D O I
10.1103/PhysRevLett.106.014101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the concept of dynamical monodromy plays a natural fundamental role in the spatiotemporal dynamics of counterpropagating nonlinear wave systems. By means of an adiabatic change of the boundary conditions imposed to the wave system, we show that Hamiltonian monodromy manifests itself through the spontaneous formation of a topological phase singularity (2 pi- or pi-phase defect) in the nonlinear waves. This manifestation of dynamical Hamiltonian monodromy is illustrated by generic nonlinear wave models. In particular, we predict that its measurement can be realized in a direct way in the framework of a nonlinear optics experiment.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Dynamical manifestation of Hamiltonian monodromy
    Delos, J. B.
    Dhont, G.
    Sadovskii, D. A.
    Zhilinskii, B. I.
    EPL, 2008, 83 (02)
  • [2] Topological changes of wave functions associated with Hamiltonian monodromy
    Chen, C.
    Delos, J. B.
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [3] Monodromy of Hamiltonian systems with complexity 1 torus actions
    Efstathiou, K.
    Martynchuk, N.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 104 - 115
  • [4] Recent advances in the monodromy theory of integrable Hamiltonian systems
    Martynchuk, N.
    Broer, H. W.
    Efstathiou, K.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (01): : 193 - 223
  • [5] Fractional Hamiltonian monodromy
    Nekhoroshev, Nikolaii N.
    Sadovskii, Dmitrii A.
    Zhilinskii, Boris I.
    ANNALES HENRI POINCARE, 2006, 7 (06): : 1099 - 1211
  • [6] Fractional Hamiltonian Monodromy
    Nikolaií N. Nekhoroshev
    Dmitrií A. Sadovskií
    Boris I. Zhilinskií
    Annales Henri Poincaré, 2006, 7 : 1099 - 1211
  • [7] Superharmonic instability of nonlinear travelling wave solutions in Hamiltonian systems
    Sato, Naoki
    Yamada, Michio
    JOURNAL OF FLUID MECHANICS, 2019, 876 : 896 - 911
  • [8] Hamiltonian Monodromy and Morse Theory
    N. Martynchuk
    H. W. Broer
    K. Efstathiou
    Communications in Mathematical Physics, 2020, 375 : 1373 - 1392
  • [9] DEGENERATION OF HAMILTONIAN MONODROMY CYCLES
    BATES, L
    ZOU, MR
    NONLINEARITY, 1993, 6 (02) : 313 - 335
  • [10] Hamiltonian monodromy as lattice defect
    Zhilinskii, B
    TOPOLOGY IN CONDENSED MATTER, 2006, 150 : 165 - 186