Monodromy of Hamiltonian systems with complexity 1 torus actions

被引:8
|
作者
Efstathiou, K. [1 ]
Martynchuk, N. [1 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, POB 407, NL-9700 AK Groningen, Netherlands
基金
中国国家自然科学基金;
关键词
Principal bundle; Curvature form; Integrable Hamiltonian system; Monodromy; FOCUS-FOCUS SINGULARITIES; POINTS; NEIGHBORHOODS;
D O I
10.1016/j.geomphys.2016.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the monodromy of n-torus bundles in n degree of freedom integrable Hamiltonian systems with a complexity 1 torus action, that is, a Hamiltonian Tn-1 action. We show that orbits with T-1 isotropy are associated to non-trivial monodromy and we give a simple formula for computing the monodromy matrix in this case. In the case of 2 degree of freedom systems such orbits correspond to fixed points of the T-1 action. Thus we demonstrate that, given a Tn-1 invariant Hamiltonian H, it is the Tn-1 action, rather than H, that determines monodromy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条