A generalised complete flux scheme for anisotropic advection-diffusion equations

被引:7
|
作者
Cheng, Hanz Martin [1 ]
Boonkkamp, Jan ten Thije [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Complete flux scheme; Finite volume methods; Advection-diffusion equations; Anisotropic diffusion; Grid-based Peclet number; 65N08;
D O I
10.1007/s10444-021-09846-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider separating the discretisation of the diffusive and advective fluxes in the complete flux scheme. This allows the combination of several discretisation methods for the homogeneous flux with the complete flux (CF) method. In particular, we explore the combination of the hybrid mimetic mixed (HMM) method and the CF method, in order to utilise the advantages of each of these methods. The usage of HMM allows us to handle anisotropic diffusion tensors on generic polygonal (polytopal) grids, whereas the CF method provides a framework for the construction of a uniformly second-order method, even when the problem is advection dominated.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity
    Ern, Alexandre
    Stephansen, Annette F.
    Zunino, Paolo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) : 235 - 256
  • [42] Advection-diffusion lattice Boltzmann scheme for hierarchical grids
    Stiebler, Maik
    Toelke, Jonas
    Krafczyk, Manfred
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) : 1576 - 1584
  • [43] A numerical analysis of the nodal Discontinuous Galerkin scheme via Flux Reconstruction for the advection-diffusion equation
    Watkins, Jerry
    Asthana, Kartikey
    Jameson, Antony
    COMPUTERS & FLUIDS, 2016, 139 : 233 - 247
  • [44] High accuracy scheme for advection-diffusion equation of pollutants
    Zheng, Yong-Hong
    Shen, Yong-Ming
    Wang, Li-Sheng
    Wu, Chao
    2002, China Water Power Press
  • [45] Perfectly matched layers for the heat and advection-diffusion equations
    Lantos, Nicolas
    Nataf, Frederic
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 781 - 785
  • [46] A moving mesh mixed method for advection-diffusion equations
    Liu, Y
    Santos, RE
    COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE, PROCEEDINGS, 2003, : 285 - 292
  • [47] Advection-diffusion equations for generalized tactic searching behaviors
    Grünbaum, D
    JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (02) : 169 - 194
  • [48] Deformation Formulas and Inverse Problems for Advection-diffusion Equations
    Nakagiri, Shin-ichi
    SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 : 61 - 78
  • [49] ON DESTABILIZING IMPLICIT FACTORS IN DISCRETE ADVECTION-DIFFUSION EQUATIONS
    BECKERS, JM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (02) : 260 - 265
  • [50] Optimal control and numerical adaptivity for advection-diffusion equations
    Dede', L
    Quarteroni, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (05): : 1019 - 1040