A generalised complete flux scheme for anisotropic advection-diffusion equations

被引:7
|
作者
Cheng, Hanz Martin [1 ]
Boonkkamp, Jan ten Thije [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Complete flux scheme; Finite volume methods; Advection-diffusion equations; Anisotropic diffusion; Grid-based Peclet number; 65N08;
D O I
10.1007/s10444-021-09846-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider separating the discretisation of the diffusive and advective fluxes in the complete flux scheme. This allows the combination of several discretisation methods for the homogeneous flux with the complete flux (CF) method. In particular, we explore the combination of the hybrid mimetic mixed (HMM) method and the CF method, in order to utilise the advantages of each of these methods. The usage of HMM allows us to handle anisotropic diffusion tensors on generic polygonal (polytopal) grids, whereas the CF method provides a framework for the construction of a uniformly second-order method, even when the problem is advection dominated.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Numeric solution of advection-diffusion equations by a discrete time random walk scheme
    Angstmann, Christopher N.
    Henry, Bruce, I
    Jacobs, Byron A.
    McGann, Anna, V
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (03) : 680 - 704
  • [22] A study on a second order finite difference scheme for fractional advection-diffusion equations
    Vong, Seakweng
    Shi, Chenyang
    Lyu, Pin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 493 - 508
  • [23] Development of a monotonic multidimensional advection-diffusion scheme
    Wang, SK
    Sheu, TWH
    Tsai, SF
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2000, 37 (01) : 85 - 101
  • [24] VISCOUS SHOCK MOTION FOR ADVECTION-DIFFUSION EQUATIONS
    LAFORGUE, JGL
    OMALLEY, RE
    STUDIES IN APPLIED MATHEMATICS, 1995, 95 (02) : 147 - 170
  • [25] SOME STABILITY RESULTS FOR ADVECTION-DIFFUSION EQUATIONS
    HOWES, FA
    STUDIES IN APPLIED MATHEMATICS, 1986, 74 (01) : 35 - 53
  • [26] Optimality of integrability estimates for advection-diffusion equations
    Bianchini, Stefano
    Colombo, Maria
    Crippa, Gianluca
    Spinolo, Laura V.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04):
  • [27] Moments for Tempered Fractional Advection-Diffusion Equations
    Yong Zhang
    Journal of Statistical Physics, 2010, 139 : 915 - 939
  • [28] Multidomain finite elements for advection-diffusion equations
    Trotta, RL
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (01) : 91 - 118
  • [29] Lie group solutions of advection-diffusion equations
    Sun, Yubiao
    Jayaraman, Amitesh
    Chirikjian, Gregory S.
    PHYSICS OF FLUIDS, 2021, 33 (04)
  • [30] Computational technique for heat and advection-diffusion equations
    Jena, Saumya Ranjan
    Gebremedhin, Guesh Simretab
    SOFT COMPUTING, 2021, 25 (16) : 11139 - 11150