A generalised complete flux scheme for anisotropic advection-diffusion equations

被引:7
|
作者
Cheng, Hanz Martin [1 ]
Boonkkamp, Jan ten Thije [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Complete flux scheme; Finite volume methods; Advection-diffusion equations; Anisotropic diffusion; Grid-based Peclet number; 65N08;
D O I
10.1007/s10444-021-09846-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider separating the discretisation of the diffusive and advective fluxes in the complete flux scheme. This allows the combination of several discretisation methods for the homogeneous flux with the complete flux (CF) method. In particular, we explore the combination of the hybrid mimetic mixed (HMM) method and the CF method, in order to utilise the advantages of each of these methods. The usage of HMM allows us to handle anisotropic diffusion tensors on generic polygonal (polytopal) grids, whereas the CF method provides a framework for the construction of a uniformly second-order method, even when the problem is advection dominated.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Multidomain finite elements for advection-diffusion equations
    Universita degli Studi di Trento, Trento, Italy
    Appl Numer Math, 1 (91-118):
  • [32] Biological modeling with nonlocal advection-diffusion equations
    Painter, Kevin J.
    Hillen, Thomas
    Potts, Jonathan R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (01): : 57 - 107
  • [33] Moments for Tempered Fractional Advection-Diffusion Equations
    Zhang, Yong
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (05) : 915 - 939
  • [34] A Comparison of Closures for Stochastic Advection-Diffusion Equations
    Jarman, K. D.
    Tartakovsky, A. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 319 - 347
  • [35] Some Stability Results for Advection-Diffusion Equations
    Howes, F.A.
    Studies in Applied Mathematics, 1986, 74 (01): : 35 - 53
  • [36] ADVECTION-DIFFUSION AS AN ASYMPTOTIC LIMIT FOR TRANSPORT IN ANISOTROPIC MEDIA
    POMRANING, GC
    PRINJA, AK
    ANNALS OF NUCLEAR ENERGY, 1995, 22 (3-4) : 159 - 180
  • [37] On the anisotropic advection-diffusion equation with time dependent coefficients
    Hernandez-Coronado, H.
    Coronado, M.
    Del-Castillo-Negrete, D.
    REVISTA MEXICANA DE FISICA, 2017, 63 (01) : 40 - 48
  • [38] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735
  • [39] Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients
    Zoppou, C
    Knight, JH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 144 - 148
  • [40] A 2-DIMENSIONAL ADVECTION-DIFFUSION OCEAN MODEL WITH ANISOTROPIC DIFFUSION
    LIN, CA
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1990, 54 (3-4): : 229 - 255