A generalised complete flux scheme for anisotropic advection-diffusion equations

被引:7
|
作者
Cheng, Hanz Martin [1 ]
Boonkkamp, Jan ten Thije [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Complete flux scheme; Finite volume methods; Advection-diffusion equations; Anisotropic diffusion; Grid-based Peclet number; 65N08;
D O I
10.1007/s10444-021-09846-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider separating the discretisation of the diffusive and advective fluxes in the complete flux scheme. This allows the combination of several discretisation methods for the homogeneous flux with the complete flux (CF) method. In particular, we explore the combination of the hybrid mimetic mixed (HMM) method and the CF method, in order to utilise the advantages of each of these methods. The usage of HMM allows us to handle anisotropic diffusion tensors on generic polygonal (polytopal) grids, whereas the CF method provides a framework for the construction of a uniformly second-order method, even when the problem is advection dominated.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] Applicability of QSI scheme to advection-diffusion equations with domain decomposition method
    Ushijima, S
    Okuyama, Y
    Nezu, I
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 353 - 360
  • [12] A monotone finite volume scheme for advection-diffusion equations on distorted meshes
    Wang, Shuai
    Yuan, Guangwei
    Li, Yonghai
    Sheng, Zhiqiang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (07) : 1283 - 1298
  • [13] Accurate discretization of advection-diffusion equations
    Grima, R.
    Newman, T.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036703 - 1
  • [14] Nonlocal Nonlinear Advection-Diffusion Equations
    Constantin, Peter
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 281 - 292
  • [15] Nonlocal nonlinear advection-diffusion equations
    Peter Constantin
    Chinese Annals of Mathematics, Series B, 2017, 38 : 281 - 292
  • [16] ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS
    Meszaros, Alpar Richard
    Santambrogio, Filippo
    ANALYSIS & PDE, 2016, 9 (03): : 615 - 644
  • [17] Accurate discretization of advection-diffusion equations
    Grima, R
    Newman, TJ
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [18] Nonlocal Nonlinear Advection-Diffusion Equations
    Peter CONSTANTIN
    ChineseAnnalsofMathematics,SeriesB, 2017, (01) : 281 - 292
  • [19] Error estimates for a finite volume scheme for advection-diffusion equations with rough coefficients
    Navarro-Fernandez, Victor
    Schlichting, Andre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2131 - 2158
  • [20] A linearization of a backward Euler scheme for a class of degenerate nonlinear advection-diffusion equations
    Fadimba, Koffi B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1097 - E1106