Edge-disjoint spanning trees and eigenvalues

被引:20
|
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [31] ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES
    Lu, Linyuan
    Wang, Zhiyu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (04) : 2346 - 2362
  • [32] Edge-disjoint node-independent spanning trees in dense Gaussian networks
    AlBdaiwi, Bader
    Hussain, Zaid
    Cerny, Anton
    Aldred, Robert
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (12): : 4718 - 4736
  • [33] A NOTE ON FINDING MINIMUM-COST EDGE-DISJOINT SPANNING-TREES
    ROSKIND, J
    TARJAN, RE
    MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (04) : 701 - 708
  • [34] Edge-disjoint node-independent spanning trees in dense Gaussian networks
    Bader AlBdaiwi
    Zaid Hussain
    Anton Cerny
    Robert Aldred
    The Journal of Supercomputing, 2016, 72 : 4718 - 4736
  • [35] A Discharging Method to Find Subgraphs Having Two Edge-disjoint Spanning Trees
    Wang, Keke
    Zhan, Mingquan
    Lai, Hong-Jian
    ARS COMBINATORIA, 2019, 144 : 187 - 193
  • [36] Edge-disjoint placement of three trees
    Maheo, M
    Sacle, JF
    Wozniak, M
    EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (06) : 543 - 563
  • [37] Edge-Disjoint Fibonacci Trees in Hypercube
    Raman, Indhumathi
    Kuppusamy, Lakshmanan
    JOURNAL OF COMPUTER NETWORKS AND COMMUNICATIONS, 2014, 2014
  • [38] Multicast in wormhole-switched torus networks using edge-disjoint spanning trees
    Wang, H
    Blough, DM
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (09) : 1278 - 1306
  • [39] ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES IN ALL GRAPHS
    Lu, Linyuan
    Meier, Andrew
    Wang, Zhiyu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1162 - 1172
  • [40] Embedding k(n-k) edge-disjoint spanning trees in arrangement graphs
    Lin, CT
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (12) : 1277 - 1287