ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES IN ALL GRAPHS

被引:0
|
作者
Lu, Linyuan [1 ]
Meier, Andrew [1 ]
Wang, Zhiyu [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
anti-Ramsey; rainbow spanning trees; rainbow spanning forests; matroid intersec-tion theorem; edge-colored multigraph; CYCLES; PATHS;
D O I
10.1137/21M1428121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge-colored graph H is called rainbow if every edge of H receives a different color. Given any host multigraph G, the anti-Ramsey number of t edge-disjoint rainbow spanning trees in G, denoted by r(G, t), is defined as the maximum number of colors in an edge-coloring of G containing no t edge-disjoint rainbow spanning trees. For any vertex partition P, let E(P,G) be the set of noncrossing edges in G with respect to P. In this paper, we determine r(G, t) for all host multigraphs G: r(G, t) = IE(G)I if there exists a partition P0 with IE(G)I IE(P0, G)I < t(IP0I 1); and r(G, t) = maxP : | P | \geq3{IE(P,G)I + t(IPI 2)\} otherwise. As a corollary, we determine r(Kp,q, t) for all values of p, q, t, improving a result of Jia, Lu, and Zhang.
引用
收藏
页码:1162 / 1172
页数:11
相关论文
共 50 条
  • [1] ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES
    Lu, Linyuan
    Wang, Zhiyu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (04) : 2346 - 2362
  • [2] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees
    Yuxing Jia
    Mei Lu
    Yi Zhang
    Graphs and Combinatorics, 2021, 37 : 409 - 433
  • [3] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees
    Jia, Yuxing
    Lu, Mei
    Zhang, Yi
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 409 - 433
  • [4] Anti-Ramsey Problems for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles, Matchings, or Trees
    Jahanbekam, Sogol
    West, Douglas B.
    JOURNAL OF GRAPH THEORY, 2016, 82 (01) : 75 - 89
  • [5] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles and Matchings
    Jia, Yuxing
    Lu, Mei
    Zhang, Yi
    GRAPHS AND COMBINATORICS, 2019, 35 (05) : 1011 - 1021
  • [6] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles and Matchings
    Yuxing Jia
    Mei Lu
    Yi Zhang
    Graphs and Combinatorics, 2019, 35 : 1011 - 1021
  • [7] Edge-disjoint rainbow spanning trees in complete graphs
    Carraher, James M.
    Hartke, Stephen G.
    Horn, Paul
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 57 : 71 - 84
  • [8] Edge-disjoint spanning trees and eigenvalues of graphs
    Li, Guojun
    Shi, Lingsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2784 - 2789
  • [9] Edge-disjoint spanning trees and forests of graphs
    Zhou, Jiang
    Bu, Changjiang
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2021, 299 : 74 - 81
  • [10] Edge-disjoint spanning trees and eigenvalues of regular graphs
    Cioaba, Sebastian M.
    Wong, Wiseley
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 630 - 647