ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES IN ALL GRAPHS

被引:0
|
作者
Lu, Linyuan [1 ]
Meier, Andrew [1 ]
Wang, Zhiyu [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
anti-Ramsey; rainbow spanning trees; rainbow spanning forests; matroid intersec-tion theorem; edge-colored multigraph; CYCLES; PATHS;
D O I
10.1137/21M1428121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge-colored graph H is called rainbow if every edge of H receives a different color. Given any host multigraph G, the anti-Ramsey number of t edge-disjoint rainbow spanning trees in G, denoted by r(G, t), is defined as the maximum number of colors in an edge-coloring of G containing no t edge-disjoint rainbow spanning trees. For any vertex partition P, let E(P,G) be the set of noncrossing edges in G with respect to P. In this paper, we determine r(G, t) for all host multigraphs G: r(G, t) = IE(G)I if there exists a partition P0 with IE(G)I IE(P0, G)I < t(IP0I 1); and r(G, t) = maxP : | P | \geq3{IE(P,G)I + t(IPI 2)\} otherwise. As a corollary, we determine r(Kp,q, t) for all values of p, q, t, improving a result of Jia, Lu, and Zhang.
引用
收藏
页码:1162 / 1172
页数:11
相关论文
共 50 条
  • [31] EDGE-DISJOINT SPANNING-TREES - A CONNECTEDNESS THEOREM
    FARBER, M
    RICHTER, B
    SHANK, H
    JOURNAL OF GRAPH THEORY, 1985, 9 (03) : 319 - 324
  • [32] Constructing edge-disjoint spanning trees in product networks
    Ku, SC
    Wang, BF
    Hung, TK
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2003, 14 (03) : 213 - 221
  • [33] Good orientations of unions of edge-disjoint spanning trees
    Bang-Jensen, Jorgen
    Bessy, Stephane
    Huang, Jing
    Kriesell, Matthias
    JOURNAL OF GRAPH THEORY, 2021, 96 (04) : 594 - 618
  • [34] Edge-Disjoint Steiner Trees and Connectors in Graphs
    Li, Hengzhe
    Liu, Huayue
    Liu, Jianbing
    Mao, Yaping
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [35] Edge-disjoint rainbow triangles in edge-colored graphs
    Li, Luyi
    Li, Xueliang
    DISCRETE APPLIED MATHEMATICS, 2022, 318 : 21 - 30
  • [36] Embedding k(n-k) edge-disjoint spanning trees in arrangement graphs
    Lin, CT
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (12) : 1277 - 1287
  • [37] Anti-Ramsey number of matchings in outerplanar graphs
    Jin, Zemin
    Yu, Rui
    Sun, Yuefang
    DISCRETE APPLIED MATHEMATICS, 2024, 345 : 125 - 135
  • [38] EDGE-DISJOINT SPANNING TREES AND DEPTH-FIRST SEARCH
    TARJAN, RE
    ACTA INFORMATICA, 1976, 6 (02) : 171 - 185
  • [39] On Edge-Disjoint Spanning Trees in a Randomly Weighted Complete Graph
    Frieze, Alan
    Johansson, Tony
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (02): : 228 - 244
  • [40] Constructing edge-disjoint spanning trees in locally twisted cubes
    Hsieh, Sun-Yuan
    Tu, Chang-Jen
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 926 - 932