ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES IN ALL GRAPHS

被引:0
|
作者
Lu, Linyuan [1 ]
Meier, Andrew [1 ]
Wang, Zhiyu [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
anti-Ramsey; rainbow spanning trees; rainbow spanning forests; matroid intersec-tion theorem; edge-colored multigraph; CYCLES; PATHS;
D O I
10.1137/21M1428121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge-colored graph H is called rainbow if every edge of H receives a different color. Given any host multigraph G, the anti-Ramsey number of t edge-disjoint rainbow spanning trees in G, denoted by r(G, t), is defined as the maximum number of colors in an edge-coloring of G containing no t edge-disjoint rainbow spanning trees. For any vertex partition P, let E(P,G) be the set of noncrossing edges in G with respect to P. In this paper, we determine r(G, t) for all host multigraphs G: r(G, t) = IE(G)I if there exists a partition P0 with IE(G)I IE(P0, G)I < t(IP0I 1); and r(G, t) = maxP : | P | \geq3{IE(P,G)I + t(IPI 2)\} otherwise. As a corollary, we determine r(Kp,q, t) for all values of p, q, t, improving a result of Jia, Lu, and Zhang.
引用
收藏
页码:1162 / 1172
页数:11
相关论文
共 50 条
  • [41] Edge-disjoint spanning trees for the generalized butterfly networks and their applications
    Touzene, A
    Day, K
    Monien, B
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2005, 65 (11) : 1384 - 1396
  • [42] On the number of rainbow spanning trees in edge-colored complete graphs
    Fu, Hung-Lin
    Lo, Yuan-Hsun
    Perry, K. E.
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2018, 341 (08) : 2343 - 2352
  • [43] Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes
    Lin, Jia-Cian
    Yang, Jinn-Shyong
    Hsu, Chiun-Chieh
    Chang, Jou-Ming
    INFORMATION PROCESSING LETTERS, 2010, 110 (10) : 414 - 419
  • [44] Minimum degree and minimum number of edge-disjoint trees
    Lladó, A
    Lopez, SC
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 195 - 205
  • [45] Packing edge-disjoint cycles in graphs and the cyclomatic number
    Harant, Jochen
    Rautenbach, Dieter
    Recht, Peter
    Regen, Friedrich
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1456 - 1462
  • [46] ON THE NUMBER OF EDGE-DISJOINT TRIANGLES IN GRAPHS OF GIVEN SIZE
    GYORI, E
    COMBINATORICS /, 1988, 52 : 267 - 276
  • [47] Anti-Ramsey Number of Triangles in Complete Multipartite Graphs
    Jin, Zemin
    Zhong, Kangyun
    Sun, Yuefang
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 1025 - 1044
  • [48] Anti-Ramsey Number of Triangles in Complete Multipartite Graphs
    Zemin Jin
    Kangyun Zhong
    Yuefang Sun
    Graphs and Combinatorics, 2021, 37 : 1025 - 1044
  • [49] An anti-Ramsey condition on trees
    Picollelli, Michael E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [50] Edge-disjoint spanning trees on the star network with applications to fault tolerance
    Fragopoulou, P
    Akl, SG
    IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (02) : 174 - 185