Edge-disjoint spanning trees and eigenvalues

被引:20
|
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [41] Edge-Disjoint Steiner Trees and Connectors in Graphs
    Hengzhe Li
    Huayue Liu
    Jianbing Liu
    Yaping Mao
    Graphs and Combinatorics, 2023, 39
  • [42] Building k edge-disjoint spanning trees of minimum total length for isometric data embedding
    Yang, L
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) : 1680 - 1683
  • [43] Edge-Disjoint Steiner Trees and Connectors in Graphs
    Li, Hengzhe
    Liu, Huayue
    Liu, Jianbing
    Mao, Yaping
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [45] Three Edge-Disjoint Plane Spanning Paths in a Point Set
    Kindermann, P.
    Kratochvil, J.
    Liotta, G.
    Valtr, P.
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT I, 2023, 14465 : 323 - 338
  • [46] A property on reinforcing edge-disjoint spanning hypertrees in uniform hypergraphs
    Gu, Xiaofeng
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2018, 341 (02) : 400 - 404
  • [47] The maximum edge-disjoint paths problem in bidirected trees
    Erlebach, T
    Jansen, K
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (03) : 326 - 355
  • [48] Finding Edge-Disjoint Paths in Partial k -Trees
    X. Zhou
    S. Tamura
    T. Nishizeki
    Algorithmica, 2000, 26 : 3 - 30
  • [49] RANDOMIZED PARALLEL ALGORITHMS FOR MATROID UNION AND INTERSECTION, WITH APPLICATIONS TO ARBORESENCES AND EDGE-DISJOINT SPANNING-TREES
    NARAYANAN, H
    SARAN, H
    VAZIRANI, VV
    SIAM JOURNAL ON COMPUTING, 1994, 23 (02) : 387 - 397
  • [50] Minimum degree and minimum number of edge-disjoint trees
    Lladó, A
    Lopez, SC
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 195 - 205