Edge-disjoint spanning trees and eigenvalues

被引:20
|
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [21] EDGE-DISJOINT SPANNING TREES AND DEPTH-FIRST SEARCH
    TARJAN, RE
    ACTA INFORMATICA, 1976, 6 (02) : 171 - 185
  • [22] On Edge-Disjoint Spanning Trees in a Randomly Weighted Complete Graph
    Frieze, Alan
    Johansson, Tony
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (02): : 228 - 244
  • [23] Extremal graphs for a spectral inequality on edge-disjoint spanning trees
    University of Delaware, Newark
    DE
    19716, United States
    不详
    MD
    20878, United States
    不详
    MA
    02139, United States
    arXiv, 1600,
  • [24] Constructing edge-disjoint spanning trees in locally twisted cubes
    Hsieh, Sun-Yuan
    Tu, Chang-Jen
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 926 - 932
  • [25] Edge-disjoint spanning trees for the generalized butterfly networks and their applications
    Touzene, A
    Day, K
    Monien, B
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2005, 65 (11) : 1384 - 1396
  • [26] Extremal Graphs for a Spectral Inequality on Edge-Disjoint Spanning Trees
    Cioaba, Sebastian M.
    Ostuni, Anthony
    Park, Davin
    Potluri, Sriya
    Wakhare, Tanay
    Wong, Wiseley
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [27] Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes
    Lin, Jia-Cian
    Yang, Jinn-Shyong
    Hsu, Chiun-Chieh
    Chang, Jou-Ming
    INFORMATION PROCESSING LETTERS, 2010, 110 (10) : 414 - 419
  • [28] Edge-disjoint spanning trees and the number of maximum state circles of a graph
    Xiaoli Ma
    Baoyindureng Wu
    Xian’an Jin
    Journal of Combinatorial Optimization, 2018, 35 : 997 - 1008
  • [29] Edge-disjoint spanning trees on the star network with applications to fault tolerance
    Fragopoulou, P
    Akl, SG
    IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (02) : 174 - 185
  • [30] Edge-disjoint spanning trees and the number of maximum state circles of a graph
    Ma, Xiaoli
    Wu, Baoyindureng
    Jin, Xian'an
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (04) : 997 - 1008