Parameters estimation for a new anomalous thermal diffusion model in layered media

被引:6
|
作者
Chen, S. [1 ]
Jiang, X. Y. [2 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomalous heat conduction; Multilayered material; The balance method; Parameters identification; Nonlinear conjugate gradient method; HEAT-CONDUCTION; NUMERICAL APPROXIMATION; INVERSE PROBLEM; EQUATION;
D O I
10.1016/j.camwa.2016.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an inverse problem of parameters estimation for a new time fractional heat conduction model in multilayered medium. In the anomalous thermal diffusion model, we consider the fractional derivative boundary conditions and the conduction obeys modified Fourier law with Riemann-Liouville fractional operator of different order in each layer. For the direct problem, we construct an effective finite difference scheme by using the balance method to deal with the discontinuity interface. For the inverse problem, we apply the nonlinear conjugate gradient (NCG) method with different conjugated coefficients to simultaneously identify the fractional exponent in each layer. Finally, we use experimental data to verify the effectiveness of the proposed technique, in which the Jacobian matrix is achieved by a derivative-free approach. We analyze the sensitivity coefficients and the convergence behaviors of the NCG algorithm. The simulation results confirm that the fractional heat conduction model with estimated parameters gives a more accurate fitting than the classical counterpart and the NCG method is a feasible and effective technique for the inverse problem of parameters estimation in fractional model. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1172 / 1181
页数:10
相关论文
共 50 条
  • [21] Anomalous diffusion in complex heterogeneous media
    Likhomanova, P. A.
    Kalashnikov, I. Y.
    Kudryavtsev, E. M.
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2018, 50 (06) : 559 - 559
  • [22] ON THE ANOMALOUS DIFFUSION BEHAVIOR IN DISORDERED MEDIA
    WANG, KG
    PHYSICA A, 1992, 182 (1-2): : 1 - 8
  • [23] The Giant Diffusion in the Layered Porous Media
    Aleksandra, Slapik
    Jesionek, Katarzyna
    Kostur, Marcin
    6TH WARSAW SCHOOL OF STATISTICAL PHYSICS, 2017, : 113 - 113
  • [24] DIFFUSION IN LAYERED MEDIA AT LARGE TIMES
    KOROTYAEV, EL
    FIRSOVA, NE
    THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 98 (01) : 72 - 99
  • [25] PARAMETERS ESTIMATION OF THERMAL Part MODEL OF SEMICONDUCTOR DEVICES
    Gorecki, Krzysztof
    Zarebski, Janusz
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2006, 52 (03) : 347 - 360
  • [26] Layered Fluid Structure and Anomalous Diffusion under Nanoconfinement
    Wang, Gerald J.
    Hadjiconstantinou, Nicolas G.
    LANGMUIR, 2018, 34 (23) : 6976 - 6982
  • [27] Estimation of kinetic model parameters in fluorescence optical diffusion tomography
    Milstein, AB
    Webb, KJ
    Bouman, CA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (07) : 1357 - 1368
  • [28] Thermal parameters estimation of air conditioners based on reduced order equivalent thermal parameters model
    Bao, Yu-Qing
    Yao, Zi-Li
    Wu, Xue-Hua
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 151
  • [29] Estimation of erosion model erodibility parameters from media properties
    Sheridan, GJ
    So, HB
    Loch, RJ
    Walker, CM
    AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2000, 38 (02): : 265 - 284
  • [30] ANOMALOUS DIFFUSION IN HETEROGENEOUS POROUS-MEDIA
    KOCH, DL
    BRADY, JF
    PHYSICS OF FLUIDS, 1988, 31 (05) : 965 - 973