Parameters estimation for a new anomalous thermal diffusion model in layered media

被引:6
|
作者
Chen, S. [1 ]
Jiang, X. Y. [2 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomalous heat conduction; Multilayered material; The balance method; Parameters identification; Nonlinear conjugate gradient method; HEAT-CONDUCTION; NUMERICAL APPROXIMATION; INVERSE PROBLEM; EQUATION;
D O I
10.1016/j.camwa.2016.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an inverse problem of parameters estimation for a new time fractional heat conduction model in multilayered medium. In the anomalous thermal diffusion model, we consider the fractional derivative boundary conditions and the conduction obeys modified Fourier law with Riemann-Liouville fractional operator of different order in each layer. For the direct problem, we construct an effective finite difference scheme by using the balance method to deal with the discontinuity interface. For the inverse problem, we apply the nonlinear conjugate gradient (NCG) method with different conjugated coefficients to simultaneously identify the fractional exponent in each layer. Finally, we use experimental data to verify the effectiveness of the proposed technique, in which the Jacobian matrix is achieved by a derivative-free approach. We analyze the sensitivity coefficients and the convergence behaviors of the NCG algorithm. The simulation results confirm that the fractional heat conduction model with estimated parameters gives a more accurate fitting than the classical counterpart and the NCG method is a feasible and effective technique for the inverse problem of parameters estimation in fractional model. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1172 / 1181
页数:10
相关论文
共 50 条
  • [31] A new model for thermal diffusion:: Kinetic approach
    Artola, Pierre-Arnaud
    Rousseau, Bernard
    Galliero, Guillaume
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) : 10963 - 10969
  • [32] A new model for thermal diffusion: Kinetic approach
    Artola, Pierre-Arnaud
    Rousseau, Bernard
    Galliéro, Guillaume
    Journal of the American Chemical Society, 2008, 130 (33): : 10963 - 10969
  • [33] Anomalous diffusion in a symbolic model
    Ribeiro, H. V.
    Lenzi, E. K.
    Mendes, R. S.
    Santoro, P. A.
    PHYSICA SCRIPTA, 2011, 83 (04)
  • [34] Anomalous Diffusion in a Trading Model
    Khidzir, Sidiq Mohamad
    Abdullah, Wan Ahmad Tajuddin Wan
    FRONTIERS IN PHYSICS-BOOK, 2009, 1150 : 206 - 209
  • [35] Minimal model for anomalous diffusion
    Flekkoy, Eirik G.
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [36] Fractal model of anomalous diffusion
    Lech Gmachowski
    European Biophysics Journal, 2015, 44 : 613 - 621
  • [37] Fractal model of anomalous diffusion
    Gmachowski, Lech
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 (08): : 613 - 621
  • [38] Theory of Anomalous Diffusion Dynamics in Biomacromolecular Media
    Wei Wenjie
    Chen Wenlong
    Dai Xiaobin
    Yan Li-Tang
    ACTA CHIMICA SINICA, 2023, 81 (08) : 967 - 978
  • [39] Langevin equation in complex media and anomalous diffusion
    Vitali, Silvia
    Sposini, Vittoria
    Sliusarenko, Oleksii
    Paradisi, Paolo
    Castellani, Gastone
    Pagnini, Gianni
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (145)
  • [40] New traveltime approximations for VTI media and estimation of the Thomsen parameters
    Ortega, Francisco Gamboa
    Bassrei, Amin
    Zambrano, Francisco Cabrera
    JOURNAL OF APPLIED GEOPHYSICS, 2025, 235