Parameters estimation for a new anomalous thermal diffusion model in layered media

被引:6
|
作者
Chen, S. [1 ]
Jiang, X. Y. [2 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomalous heat conduction; Multilayered material; The balance method; Parameters identification; Nonlinear conjugate gradient method; HEAT-CONDUCTION; NUMERICAL APPROXIMATION; INVERSE PROBLEM; EQUATION;
D O I
10.1016/j.camwa.2016.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an inverse problem of parameters estimation for a new time fractional heat conduction model in multilayered medium. In the anomalous thermal diffusion model, we consider the fractional derivative boundary conditions and the conduction obeys modified Fourier law with Riemann-Liouville fractional operator of different order in each layer. For the direct problem, we construct an effective finite difference scheme by using the balance method to deal with the discontinuity interface. For the inverse problem, we apply the nonlinear conjugate gradient (NCG) method with different conjugated coefficients to simultaneously identify the fractional exponent in each layer. Finally, we use experimental data to verify the effectiveness of the proposed technique, in which the Jacobian matrix is achieved by a derivative-free approach. We analyze the sensitivity coefficients and the convergence behaviors of the NCG algorithm. The simulation results confirm that the fractional heat conduction model with estimated parameters gives a more accurate fitting than the classical counterpart and the NCG method is a feasible and effective technique for the inverse problem of parameters estimation in fractional model. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1172 / 1181
页数:10
相关论文
共 50 条
  • [41] Continuous-time random-walk model for anomalous diffusion in expanding media
    Le Vot, F.
    Abad, E.
    Yuste, S. B.
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [42] Hydrodynamic dispersion in heterogeneous anisotropic porous media: A simple model for anomalous diffusion emergence
    Hernandez, D.
    Ramirez-Alatriste, F.
    Romo-Cruz, J. C. R.
    Olivares-Quiroz, L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 508 : 424 - 433
  • [43] New Temporal Asymptotics of the Survival Probability in the Capture of Particles in Traps in Media with Anomalous Diffusion
    Arkhincheev, V. E.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2020, 131 (05) : 741 - 744
  • [44] A NEW GENERALIZATION OF THE Y-FUNCTION APPLIED TO MODEL THE ANOMALOUS DIFFUSION
    Yang, Xiao-Jun
    Yu, Xiao-Jin
    THERMAL SCIENCE, 2022, 26 (02): : 1069 - 1079
  • [45] Anomalous two-state model for anomalous diffusion
    Shushin, AI
    PHYSICAL REVIEW E, 2001, 64 (05): : 12
  • [46] New Temporal Asymptotics of the Survival Probability in the Capture of Particles in Traps in Media with Anomalous Diffusion
    V. E. Arkhincheev
    Journal of Experimental and Theoretical Physics, 2020, 131 : 741 - 744
  • [47] Estimation of protein diffusion parameters
    Ghodsi, Zara
    Hassani, Hossein
    Kalantari, Mahdi
    Silva, Emmanuel Sirimal
    STAT, 2018, 7 (01):
  • [48] AN ESTIMATION OF PARAMETERS OF LATERAL DIFFUSION
    BYZOVA, NL
    IVANOV, VN
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1967, 3 (05): : 481 - &
  • [49] Anomalous diffusion and thermal diffusion of light ions in a nonisothermal plasma
    Airapetyan, M. Yu.
    Uryupin, S. A.
    JETP LETTERS, 2008, 87 (12) : 677 - 681
  • [50] Anomalous diffusion and thermal diffusion of light ions in a nonisothermal plasma
    M. Yu. Airapetyan
    S. A. Uryupin
    JETP Letters, 2008, 87 : 677 - 681