DIFFUSION IN LAYERED MEDIA AT LARGE TIMES

被引:4
|
作者
KOROTYAEV, EL
FIRSOVA, NE
机构
关键词
D O I
10.1007/BF01015126
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The large-time asymptotic behavior of the Green's function for the one-dimensional diffusion equation is found in two cases: 1) the potential is a function with compact support; 2) the potential is a periodic function of the coordinates. In the first case, the asymptotic behavior of the Green's function can be expressed in terms of the elements of the S matrix of the corresponding Schrodinger operator for negative values of the energy on the spectral plane. In the second case, the asymptotic behavior can be expressed in terms of Floquet-Bloch functions of the corresponding Hille operator at negative values of the energy on the spectral plane. The results are used to study diffusion in layered media at large times. The case of external force is also considered. In the periodic case, the Seeley coefficients are found.
引用
收藏
页码:72 / 99
页数:28
相关论文
共 50 条
  • [1] OPTICAL DIFFUSION IN LAYERED MEDIA
    KEIJZER, M
    STAR, WM
    STORCHI, PRM
    APPLIED OPTICS, 1988, 27 (09): : 1820 - 1824
  • [2] The Giant Diffusion in the Layered Porous Media
    Aleksandra, Slapik
    Jesionek, Katarzyna
    Kostur, Marcin
    6TH WARSAW SCHOOL OF STATISTICAL PHYSICS, 2017, : 113 - 113
  • [3] A PROGRAM FOR FINDING SEISMIC-REFLECTION TIMES FOR LAYERED MEDIA
    YOUNG, CT
    JOURNAL OF GEOLOGICAL EDUCATION, 1985, 33 (03) : 156 - 160
  • [4] Diffusion theory for multi-layered scattering media
    Hollmann, J
    Wang, LHV
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XVI, 2005, 5695 : 101 - 109
  • [5] Method for measuring the diffusion coefficient of homogeneous and layered media
    Martelli, F
    Sassaroli, A
    Yamada, Y
    Zaccanti, G
    OPTICS LETTERS, 2000, 25 (20) : 1508 - 1510
  • [6] CONSTRUCTION OF GREENS FUNCTION FOR DIFFUSION OF NEUTRONS IN LAYERED MEDIA
    HEINDLER, M
    ACTA PHYSICA AUSTRIACA, 1976, 45 (1-2): : 111 - 124
  • [7] REACTION-DIFFUSION FRONTS IN PERIODICALLY LAYERED MEDIA
    PAPANICOLAOU, G
    XUE, X
    JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (5-6) : 915 - 931
  • [8] To the theory of diffusion in inhomogeneous media: Short times of the process
    A. G. Kesarev
    V. V. Kondrat’ev
    The Physics of Metals and Metallography, 2008, 106 : 327 - 331
  • [9] Diffusion of the utopias. The academy and the media in times of pandemic
    Ribon, Maria A.
    Perez-Gonzalez, A-Beatriz
    Vazquez, Carmen
    H-ERMES-JOURNAL OF COMMUNICATION, 2021, 19 : 263 - 291
  • [10] On the theory of diffusion in inhomogeneous media: Long times of the process
    A. G. Kesarev
    V. V. Kondrat’ev
    The Physics of Metals and Metallography, 2009, 108 : 30 - 37