DIFFUSION IN LAYERED MEDIA AT LARGE TIMES

被引:4
|
作者
KOROTYAEV, EL
FIRSOVA, NE
机构
关键词
D O I
10.1007/BF01015126
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The large-time asymptotic behavior of the Green's function for the one-dimensional diffusion equation is found in two cases: 1) the potential is a function with compact support; 2) the potential is a periodic function of the coordinates. In the first case, the asymptotic behavior of the Green's function can be expressed in terms of the elements of the S matrix of the corresponding Schrodinger operator for negative values of the energy on the spectral plane. In the second case, the asymptotic behavior can be expressed in terms of Floquet-Bloch functions of the corresponding Hille operator at negative values of the energy on the spectral plane. The results are used to study diffusion in layered media at large times. The case of external force is also considered. In the periodic case, the Seeley coefficients are found.
引用
收藏
页码:72 / 99
页数:28
相关论文
共 50 条
  • [31] Media times/historical times
    Schwarz, B
    SCREEN, 2004, 45 (02) : 93 - 105
  • [32] Diffusion of a set of random walkers in Euclidean media. First passage times
    Yuste, SB
    Acedo, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (03): : 507 - 512
  • [33] Random walk diffusion simulations in semi-permeable layered media with varying diffusivity
    Ignasi Alemany
    Jan N. Rose
    Jérôme Garnier-Brun
    Andrew D. Scott
    Denis J. Doorly
    Scientific Reports, 12
  • [34] Random walk diffusion simulations in semi-permeable layered media with varying diffusivity
    Alemany, Ignasi
    Rose, Jan N.
    Garnier-Brun, Jerome
    Scott, Andrew D.
    Doorly, Denis J.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] Light diffusion in N-layered turbid media: steady-state domain
    Liemert, Andre
    Kienle, Alwin
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (02)
  • [36] Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method
    Martelli, F
    Sassaroli, A
    Del Bianco, S
    Yamada, Y
    Zaccanti, G
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [37] Large time asymptotics in contaminant transport in porous media with variable diffusion
    Duro, G
    Zuazua, E
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 317 - 325
  • [38] MEDIA LITERACY IN TIMES OF MEDIA DIVIDES
    Zuran, Kaja
    Ivanisin, Marko
    MEDIJSKE STUDIJE-MEDIA STUDIES, 2013, 4 (08): : 3 - 16
  • [39] DYNAMICS OF LAYERED MEDIA
    SABODASH, PF
    SOVIET PHYSICS ACOUSTICS-USSR, 1971, 17 (01): : 102 - &
  • [40] IDENTIFICATION OF LAYERED MEDIA
    KAISER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T653 - T655