Hybrid Berezinskii-Kosterlitz-Thouless and Ising topological phase transition in the generalized two-dimensional XY model using tensor networks

被引:11
|
作者
Song, Feng-Feng [1 ,2 ]
Zhang, Guang-Ming [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
关键词
MATRIX PRODUCT STATES;
D O I
10.1103/PhysRevB.103.024518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In tensor network representation, the partition function of a generalized two-dimensional XY spin model with topological integer and half-integer vortex excitations is mapped to a tensor product of one-dimensional quantum transfer operator, whose eigenequation can be solved by an algorithm of variational uniform matrix product states. Using the singularities of the entanglement entropy, we accurately determine the complete phase diagram of this model. Both the integer vortex-antivortex binding and half-integer vortex-antivortex binding phases are separated from the disordered phase by the usual Berezinskii-Kosterlitz-Thouless (BKT) transitions, while a continuous topological phase transition exists between two different vortex binding phases, exhibiting a logarithmic divergence of the specific heat and exponential divergence of the spin correlation length. A hybrid BKT and Ising universality class of topological phase transition is thus established. We further prove that three phase transition lines meet at a multicritical point from which a deconfinement crossover line extends into the disordered phase.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Berezinskii-Kosterlitz-Thouless Transition of the Two-Dimensional XY Model on the Honeycomb Lattice
    Jiang, Fu-Jiun
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (10):
  • [2] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [3] Resolving the Berezinskii-Kosterlitz-Thouless transition in the two-dimensional XY model with tensor-network-based level spectroscopy
    Ueda, Atsushi
    Oshikawa, Masaki
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [4] Berezinskii-Kosterlitz-Thouless phase in two-dimensional ferroelectrics
    Xu, Changsong
    Nahas, Yousra
    Prokhorenko, Sergei
    Xiang, Hongjun
    Bellaiche, L.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [5] First-order and Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional generalized XY models
    da Silva, P. A.
    Campos-Lopes, R. J.
    Pereira, A. R.
    PHYSICAL REVIEW B, 2024, 110 (10)
  • [6] Berezinskii-Kosterlitz-Thouless Transition in Two-Dimensional Dipole Systems
    Filinov, A.
    Prokof'ev, N. V.
    Bonitz, M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (07)
  • [7] Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes
    Bombin, Raul
    Mazzanti, Ferran
    Boronat, Jordi
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [8] Berezinskii-Kosterlitz-Thouless phase transition of 2D dilute generalized XY model
    Sun, Yun-Zhou
    Liang, Jian-Chu
    Xu, Si-Liu
    Yi, Lin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (07) : 1391 - 1399
  • [9] Vortex lattice in two-dimensional chiral XY ferromagnets and the inverse Berezinskii-Kosterlitz-Thouless transition
    Duran, Alejo Costa
    Sturla, Mauricio
    PHYSICAL REVIEW B, 2020, 102 (10)
  • [10] Comment on "Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes"
    Cinti, Fabio
    Boninsegni, Massimo
    PHYSICAL REVIEW A, 2020, 102 (04)