Hybrid Berezinskii-Kosterlitz-Thouless and Ising topological phase transition in the generalized two-dimensional XY model using tensor networks

被引:11
|
作者
Song, Feng-Feng [1 ,2 ]
Zhang, Guang-Ming [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
关键词
MATRIX PRODUCT STATES;
D O I
10.1103/PhysRevB.103.024518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In tensor network representation, the partition function of a generalized two-dimensional XY spin model with topological integer and half-integer vortex excitations is mapped to a tensor product of one-dimensional quantum transfer operator, whose eigenequation can be solved by an algorithm of variational uniform matrix product states. Using the singularities of the entanglement entropy, we accurately determine the complete phase diagram of this model. Both the integer vortex-antivortex binding and half-integer vortex-antivortex binding phases are separated from the disordered phase by the usual Berezinskii-Kosterlitz-Thouless (BKT) transitions, while a continuous topological phase transition exists between two different vortex binding phases, exhibiting a logarithmic divergence of the specific heat and exponential divergence of the spin correlation length. A hybrid BKT and Ising universality class of topological phase transition is thus established. We further prove that three phase transition lines meet at a multicritical point from which a deconfinement crossover line extends into the disordered phase.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Berezinskii-Kosterlitz-Thouless phase transition in a 2D-XY ferromagnetic monolayer
    Jiesu Wang
    Journal of Semiconductors, 2021, 42 (12) : 16 - 18
  • [22] Berezinskii-Kosterlitz-Thouless transition and BCS-Bose crossover in the two-dimensional attractive Hubbard model
    Dupuis, N
    PHYSICAL REVIEW B, 2004, 70 (13) : 134502 - 1
  • [23] Berezinskii-Kosterlitz-Thouless phase transition in a 2D-XY ferromagnetic monolayer
    Wang, Jiesu
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (12)
  • [24] Berezinskii-Kosterlitz-Thouless order in two-dimensional O(2)-ferrofluid
    Gruber, C
    Tamura, H
    Zagrebnov, VA
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (5-6) : 875 - 893
  • [25] Bose-Einstein condensation and Berezinskii-Kosterlitz-Thouless transition in the two-dimensional nonlinear Schrodinger model
    Nazarenko, Sergey
    Onorato, Miguel
    Proment, Davide
    PHYSICAL REVIEW A, 2014, 90 (01)
  • [26] Fulde-Ferrell states and Berezinskii-Kosterlitz-Thouless phase transition in two-dimensional imbalanced Fermi gases
    Yin, Shaoyu
    Martikainen, J. -P.
    Torma, P.
    PHYSICAL REVIEW B, 2014, 89 (01)
  • [27] Pseudogap phenomena in a two-dimensional ultracold Fermi gas near the Berezinskii-Kosterlitz-Thouless transition
    Matsumoto, M.
    Ohashi, Y.
    27TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT27), PTS 1-5, 2014, 568
  • [28] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models
    Borisenko, Oleg
    Chelnokov, Volodymyr
    Cuteri, Francesca
    Papa, Alessandro
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [29] Evidence for Berezinskii-Kosterlitz-Thouless transition in atomically flat two-dimensional Pb superconducting films
    Zhao, Weiwei
    Wang, Qingyan
    Liu, Minhao
    Zhang, Wenhao
    Wang, Yilin
    Chen, Mu
    Guo, Yang
    He, Ke
    Chen, Xi
    Wang, Yayu
    Wang, Jian
    Xie, Xincheng
    Niu, Qian
    Wang, Lili
    Ma, Xucun
    Jain, Jainendra K.
    Chan, M. H. W.
    Xue, Qi-Kun
    SOLID STATE COMMUNICATIONS, 2013, 165 : 59 - 63
  • [30] Berezinskii-Kosterlitz-Thouless-like percolation transitions in the two-dimensional XY model
    Hu, Hao
    Deng, Youjin
    Blote, Henk W. J.
    PHYSICAL REVIEW E, 2011, 83 (01):