Hybrid Berezinskii-Kosterlitz-Thouless and Ising topological phase transition in the generalized two-dimensional XY model using tensor networks

被引:11
|
作者
Song, Feng-Feng [1 ,2 ]
Zhang, Guang-Ming [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
关键词
MATRIX PRODUCT STATES;
D O I
10.1103/PhysRevB.103.024518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In tensor network representation, the partition function of a generalized two-dimensional XY spin model with topological integer and half-integer vortex excitations is mapped to a tensor product of one-dimensional quantum transfer operator, whose eigenequation can be solved by an algorithm of variational uniform matrix product states. Using the singularities of the entanglement entropy, we accurately determine the complete phase diagram of this model. Both the integer vortex-antivortex binding and half-integer vortex-antivortex binding phases are separated from the disordered phase by the usual Berezinskii-Kosterlitz-Thouless (BKT) transitions, while a continuous topological phase transition exists between two different vortex binding phases, exhibiting a logarithmic divergence of the specific heat and exponential divergence of the spin correlation length. A hybrid BKT and Ising universality class of topological phase transition is thus established. We further prove that three phase transition lines meet at a multicritical point from which a deconfinement crossover line extends into the disordered phase.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The Berezinskii–Kosterlitz–Thouless Transition and Melting Scenarios of Two-Dimensional Systems
    V. N. Ryzhov
    E. A. Gaiduk
    E. E. Tareyeva
    Yu. D. Fomin
    E. N. Tsiok
    Physics of Particles and Nuclei, 2020, 51 : 786 - 790
  • [42] Liquid crystal phases of two-dimensional dipolar gases and Berezinskii-Kosterlitz-Thouless melting
    Zhigang Wu
    Jens K. Block
    Georg M. Bruun
    Scientific Reports, 6
  • [43] Fluctuation conductance and the Berezinskii-Kosterlitz-Thouless transition in two dimensional epitaxial NbTiN ultrathin films
    Makise, K.
    Terai, H.
    Yamashita, T.
    Miki, S.
    Wang, Z.
    Uzawa, Y.
    Ezaki, S.
    Odou, T.
    Shinozaki, B.
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [44] First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii-Kosterlitz-Thouless transition
    Liu, Xia-Ji
    Hu, Hui
    ANNALS OF PHYSICS, 2014, 351 : 531 - 539
  • [45] Detection of Berezinskii-Kosterlitz-Thouless transitions for the two-dimensional q-state clock models with neural networks
    Tseng, Yuan-Heng
    Jiang, Fu-Jiun
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12):
  • [46] Berezinskii-Kosterlitz-Thouless phase transition for the dilute planar rotator model on a triangular lattice
    Sun, Yun-Zhou
    Yi, Lin
    Wysin, G. M.
    PHYSICAL REVIEW B, 2008, 78 (15)
  • [47] QUANTUM EFFECTS ON THE BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION IN THE FERROMAGNETIC 2-DIMENSIONAL XXZ MODEL
    CUCCOLI, A
    TOGNETTI, V
    VERRUCCHI, P
    VAIA, R
    PHYSICAL REVIEW B, 1995, 51 (18): : 12840 - 12843
  • [48] Phase transition in the generalized Ising-Kosterlitz-Thouless model
    P. A. Prudkovskii
    Journal of Experimental and Theoretical Physics Letters, 2005, 82 : 452 - 454
  • [49] Phase transition in the generalized Ising-Kosterlitz-Thouless model
    Prudkovskii, PA
    JETP LETTERS, 2005, 82 (07) : 452 - 454
  • [50] Observation of the Berezinskii-Kosterlitz-Thouless Transition in a Two-Dimensional Bose Gas via Matter-Wave Interferometry
    Sunami, S.
    Singh, V. P.
    Garrick, D.
    Beregi, A.
    Barker, A. J.
    Luksch, K.
    Bentine, E.
    Mathey, L.
    Foot, C. J.
    PHYSICAL REVIEW LETTERS, 2022, 128 (25)