First-order and Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional generalized XY models

被引:0
|
作者
da Silva, P. A. [1 ]
Campos-Lopes, R. J. [2 ]
Pereira, A. R. [1 ]
机构
[1] Univ Fed Vicosa, Dept Fis, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Int Sch Adv Studies SISSA, Phys Dept, Condensed Matter Theory, Via Bonomea 265, I-34136 Trieste, Italy
关键词
CONTINUOUS SYMMETRY GROUP; LONG-RANGE ORDER; MONTE-CARLO; REFLECTION POSITIVITY; LATTICE; SIMULATIONS; DESTRUCTION; DYNAMICS; BEHAVIOR; SYSTEMS;
D O I
10.1103/PhysRevB.110.104112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Besides the Berezinskii-Kosterlitz-Thouless phase transition, the two-dimensional generalized XY model, identified by a generalization parameter q (as proposed by Romano and Zagrebnov), can also support a first-order phase transition, starting from a critical value q(c). However, the value of q(c) at which this transition takes place is unknown. In this paper, we take two approaches to accurately determine the critical parameter q(c). Furthermore, we show that the model is characterized by three distinct regions concerning both first-order and BerezinskiiKosterlitz-Thouless phase transitions. Finally, the underlying mechanism governing such transitions is presented, along with an estimation of the critical temperatures.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Berezinskii-Kosterlitz-Thouless phase in two-dimensional ferroelectrics
    Xu, Changsong
    Nahas, Yousra
    Prokhorenko, Sergei
    Xiang, Hongjun
    Bellaiche, L.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [2] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional systems with internal symmetries
    S. A. Bulgadaev
    Journal of Experimental and Theoretical Physics, 1999, 89 : 1107 - 1113
  • [3] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models
    Borisenko, Oleg
    Chelnokov, Volodymyr
    Cuteri, Francesca
    Papa, Alessandro
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [4] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional systems with internal symmetries
    Bulgadaev, SA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 89 (06) : 1107 - 1113
  • [5] Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models
    Bighin, Giacomo
    Defenu, Nicolo
    Nandori, Istvan
    Salasnich, Luca
    Trombettoni, Andrea
    PHYSICAL REVIEW LETTERS, 2019, 123 (10)
  • [6] Berezinskii-Kosterlitz-Thouless Transition of the Two-Dimensional XY Model on the Honeycomb Lattice
    Jiang, Fu-Jiun
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (10):
  • [7] Berezinskii-Kosterlitz-Thouless order in two-dimensional O(2)-ferrofluid
    Gruber, C
    Tamura, H
    Zagrebnov, VA
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (5-6) : 875 - 893
  • [8] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [9] Berezinskii-Kosterlitz-Thouless transition in two-dimensional lattice gas models
    Chamati, Hassan
    Romano, Silvano
    PHYSICAL REVIEW B, 2006, 73 (18)
  • [10] Universal behavior of two-dimensional bosonic gases at Berezinskii-Kosterlitz-Thouless transitions
    Ceccarelli, Giacomo
    Nespolo, Jacopo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2013, 88 (02)