Cascaded Correlation Refinement for Robust Deep Tracking

被引:16
|
作者
Ge, Shiming [1 ]
Zhang, Chunhui [1 ,2 ]
Li, Shikun [1 ,2 ]
Zeng, Dan [3 ]
Tao, Dacheng [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100095, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China
[3] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Key Lab Specialty Fiber Opt & Opt Access Networks, Joint Int Res Lab Specialty Fiber Opt & Adv Commu, Shanghai 200040, Peoples R China
[4] Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Darlington, NSW 2008, Australia
[5] Univ Sydney, Fac Engn, Sch Comp Sci, Darlington, NSW 2008, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会; 北京市自然科学基金;
关键词
Target tracking; Adaptation models; Robustness; Correlation; Feature extraction; Visualization; Cascaded refinement; correlation filter; deep learning; visual tracking; OBJECT TRACKING;
D O I
10.1109/TNNLS.2020.2984256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent deep trackers have shown superior performance in visual tracking. In this article, we propose a cascaded correlation refinement approach to facilitate the robustness of deep tracking. The core idea is to address accurate target localization and reliable model update in a collaborative way. To this end, our approach cascades multiple stages of correlation refinement to progressively refine target localization. Thus, the localized object could be used to learn an accurate on-the-fly model for improving the reliability of model update. Meanwhile, we introduce an explicit measure to identify the tracking failure and then leverage a simple yet effective look-back scheme to adaptively incorporate the initial model and on-the-fly model to update the tracking model. As a result, the tracking model can be used to localize the target more accurately. Extensive experiments on OTB2013, OTB2015, VOT2016, VOT2018, UAV123, and GOT-10k demonstrate that the proposed tracker achieves the best robustness against the state of the arts.
引用
收藏
页码:1276 / 1288
页数:13
相关论文
共 50 条
  • [41] A Robust Visual Tracking via Nonlocal Correlation Filters
    Wei, Yanxia
    Jiang, Zhen
    Chen, Dongxun
    SEVENTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2019), 2019, 11205
  • [42] Correlation Gaussian Particle Filter for Robust Visual Tracking
    Zhang, Juan
    Liu, Zhigang
    Lin, Yuehan
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4854 - 4857
  • [43] Robust visual tracking via a hybrid correlation filter
    Wang, Yong
    Luo, Xinbin
    Ding, Lu
    Wu, Jingjing
    Fu, Shan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (22) : 31633 - 31648
  • [44] Robust visual tracking via a hybrid correlation filter
    Yong Wang
    Xinbin Luo
    Lu Ding
    Jingjing Wu
    Shan Fu
    Multimedia Tools and Applications, 2019, 78 : 31633 - 31648
  • [45] Learning adaptively windowed correlation filters for robust tracking
    Kuai, Yangliu
    Wen, Gongjian
    Li, Dongdong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 51 : 104 - 111
  • [46] Robust Scale Adaptive Visual Tracking with Correlation Filters
    Li, Chunbao
    Yang, Bo
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [47] Unit Correlation With Interactive Feature for Robust and Effective Tracking
    Zhou, Ze
    Sun, Yinghui
    Sun, Quansen
    Li, Chaobo
    Ren, Zhenwen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4242 - 4254
  • [48] Regularisation learning of correlation filters for robust visual tracking
    Jiang, Min
    Shen, Jianyu
    Kong, Jun
    Huo, Hongtao
    IET IMAGE PROCESSING, 2018, 12 (09) : 1586 - 1594
  • [49] Correlation tracking approach robust to the variation of image brightness
    Mu, X. (syitcn@163.com), 1600, Chinese Society of Astronautics (41):
  • [50] Deformable Parts Correlation Filters for Robust Visual Tracking
    Lukezic, Alan
    Zajc, Luka Cehovin
    Kristan, Matej
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (06) : 1849 - 1861