Cascaded Correlation Refinement for Robust Deep Tracking

被引:16
|
作者
Ge, Shiming [1 ]
Zhang, Chunhui [1 ,2 ]
Li, Shikun [1 ,2 ]
Zeng, Dan [3 ]
Tao, Dacheng [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100095, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China
[3] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Key Lab Specialty Fiber Opt & Opt Access Networks, Joint Int Res Lab Specialty Fiber Opt & Adv Commu, Shanghai 200040, Peoples R China
[4] Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Darlington, NSW 2008, Australia
[5] Univ Sydney, Fac Engn, Sch Comp Sci, Darlington, NSW 2008, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会; 北京市自然科学基金;
关键词
Target tracking; Adaptation models; Robustness; Correlation; Feature extraction; Visualization; Cascaded refinement; correlation filter; deep learning; visual tracking; OBJECT TRACKING;
D O I
10.1109/TNNLS.2020.2984256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent deep trackers have shown superior performance in visual tracking. In this article, we propose a cascaded correlation refinement approach to facilitate the robustness of deep tracking. The core idea is to address accurate target localization and reliable model update in a collaborative way. To this end, our approach cascades multiple stages of correlation refinement to progressively refine target localization. Thus, the localized object could be used to learn an accurate on-the-fly model for improving the reliability of model update. Meanwhile, we introduce an explicit measure to identify the tracking failure and then leverage a simple yet effective look-back scheme to adaptively incorporate the initial model and on-the-fly model to update the tracking model. As a result, the tracking model can be used to localize the target more accurately. Extensive experiments on OTB2013, OTB2015, VOT2016, VOT2018, UAV123, and GOT-10k demonstrate that the proposed tracker achieves the best robustness against the state of the arts.
引用
收藏
页码:1276 / 1288
页数:13
相关论文
共 50 条
  • [21] Robust Visual Tracking with Spatial Phase Correlation
    Zha, Yufei
    Zhang, Lichao
    Yang, Yuan
    Qin, Bin
    Li, Hao
    Li, HuanYu
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 30 - 35
  • [22] Robust Part-Based Correlation Tracking
    Liu, Xiaodong
    Zhou, Yue
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 635 - 642
  • [23] ACFT: adversarial correlation filter for robust tracking
    Huang, Hanqiao
    Zha, Yufei
    Zheng, Meiyun
    Zhang, Peng
    IET IMAGE PROCESSING, 2019, 13 (14) : 2687 - 2693
  • [24] Structural Correlation Filter for Robust Visual Tracking
    Liu, Si
    Zhang, Tianzhu
    Cao, Xiaochun
    Xu, Changsheng
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4312 - 4320
  • [25] A Rotation Adaptive Correlation Filter for Robust Tracking
    Du, Qianyun
    Cai, Zhao-quan
    Liu, Hao
    Yu, Zhu Liang
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 1035 - 1038
  • [26] Correlation tracking via robust region proposals
    Han, Yuqi
    Nan, Jinghong
    Zhang, Zengshuo
    Wang, Jingjing
    Zhao, Baojun
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (19): : 5515 - 5518
  • [27] Visual object tracking based on residual network and cascaded correlation filters
    Jianming Zhang
    Juan Sun
    Jin Wang
    Xiao-Guang Yue
    Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 8427 - 8440
  • [28] Visual object tracking based on residual network and cascaded correlation filters
    Zhang, Jianming
    Sun, Juan
    Wang, Jin
    Yue, Xiao-Guang
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (08) : 8427 - 8440
  • [29] ROBUST VISUAL TRACKING WITH DEEP FEATURE FUSION
    Wang, Guokun
    Wang, Jingjing
    Tang, Wenyi
    Yu, Nenghai
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1917 - 1921
  • [30] DeepSFM: Robust Deep Iterative Refinement for Structure From Motion
    Ren, Xinlin
    Wei, Xingkui
    Li, Zhuwen
    Fu, Yanwei
    Zhang, Yinda
    Xue, Xiangyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (06) : 4058 - 4074