Cascaded Correlation Refinement for Robust Deep Tracking

被引:16
|
作者
Ge, Shiming [1 ]
Zhang, Chunhui [1 ,2 ]
Li, Shikun [1 ,2 ]
Zeng, Dan [3 ]
Tao, Dacheng [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100095, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China
[3] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Key Lab Specialty Fiber Opt & Opt Access Networks, Joint Int Res Lab Specialty Fiber Opt & Adv Commu, Shanghai 200040, Peoples R China
[4] Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Darlington, NSW 2008, Australia
[5] Univ Sydney, Fac Engn, Sch Comp Sci, Darlington, NSW 2008, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会; 北京市自然科学基金;
关键词
Target tracking; Adaptation models; Robustness; Correlation; Feature extraction; Visualization; Cascaded refinement; correlation filter; deep learning; visual tracking; OBJECT TRACKING;
D O I
10.1109/TNNLS.2020.2984256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent deep trackers have shown superior performance in visual tracking. In this article, we propose a cascaded correlation refinement approach to facilitate the robustness of deep tracking. The core idea is to address accurate target localization and reliable model update in a collaborative way. To this end, our approach cascades multiple stages of correlation refinement to progressively refine target localization. Thus, the localized object could be used to learn an accurate on-the-fly model for improving the reliability of model update. Meanwhile, we introduce an explicit measure to identify the tracking failure and then leverage a simple yet effective look-back scheme to adaptively incorporate the initial model and on-the-fly model to update the tracking model. As a result, the tracking model can be used to localize the target more accurately. Extensive experiments on OTB2013, OTB2015, VOT2016, VOT2018, UAV123, and GOT-10k demonstrate that the proposed tracker achieves the best robustness against the state of the arts.
引用
收藏
页码:1276 / 1288
页数:13
相关论文
共 50 条
  • [31] LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation
    Zhou, Yixuan
    Zhang, Weimin
    Shi, Yongliang
    Wang, Ziyu
    Li, Fangxing
    Huang, Qiang
    SENSORS, 2020, 20 (23) : 1 - 19
  • [32] Global robust output tracking control for a class of uncertain cascaded nonlinear systems
    Yu, Jiang-Bo
    Zhao, Yan
    Wu, Yu-Qiang
    AUTOMATICA, 2018, 93 : 274 - 281
  • [33] Deep Deblurring Correlation Filter for Object Tracking
    Bai, Yu
    Xu, Tingfa
    Huang, Bo
    Yang, Ruoling
    IEEE ACCESS, 2020, 8 : 68623 - 68637
  • [34] Self-Supervised Deep Correlation Tracking
    Yuan, Di
    Chang, Xiaojun
    Huang, Po-Yao
    Liu, Qiao
    He, Zhenyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 976 - 985
  • [35] Robust Object Tracking Using Alternative Correlation Filters
    Baskurt, Kemal Batuhan
    Samet, Refik
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [36] Robust Visual Tracking Based on Kernelized Correlation Filters
    Jiang, Min
    Shen, Jianyu
    Kong, Jun
    Wang, Benxuan
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), 2017, : 110 - 115
  • [37] Robust visual tracking with correlation filters and metric learning
    Yuan, Di
    Kang, Wei
    He, Zhenyu
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [38] Ensemble Of Adaptive Correlation Filters For Robust Visual Tracking
    Gundogdu, Erhan
    Ozkan, Huseyin
    Alatan, A. Aydin
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2016, : 15 - 22
  • [39] ROBUST VISUAL TRACKING USING CORRELATION RESPONSE MAP
    Sheng, Hao
    Lv, Kai
    Chen, Jiahui
    Li, Wei
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1689 - 1693
  • [40] Robust abnormity detecting and tracking using correlation coefficient
    Zheng, Jin
    Li, Bo
    Yao, Chunlian
    12TH INTERNATIONAL MULTI-MEDIA MODELLING CONFERENCE PROCEEDINGS, 2006, : 72 - 79