Learning adaptively windowed correlation filters for robust tracking

被引:15
|
作者
Kuai, Yangliu [1 ]
Wen, Gongjian [1 ]
Li, Dongdong [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci, Changsha, Hunan, Peoples R China
关键词
Correlation filter; Target likelihood; Window adaptation; OBJECT TRACKING;
D O I
10.1016/j.jvcir.2018.01.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual tracking is a fundamental component for high-level video understanding problems such as motion analysis, event detection and action recognition. Recently, Discriminative Correlation Filters (DCF) have achieved enormous popularity in the tracking community due to high computational efficiency and fair robustness. However, the underlying boundary effect of DCF leads to a very restricted target search region at the detection step. Generally, a larger search area is adopted to overcome this disadvantage. Such an expansion of search area usually includes substantial amount of background information which will contaminate the tracking model in realist tracking scenarios. To alleviate this major drawback, we propose a generic DCF tracking framework which suppresses background information and highlights the foreground object with an object likelihood map computed from the color histograms. This object likelihood map is merged with the cosine window and then integrated into the DCF formulation. Therefore, DCF are less burdened in the training step by focusing more on pixels with higher object likelihood probability. Extensive experiments on the OTB50 and OTB100 benchmarks demonstrate that our adaptively windowed tracking framework can be combined with many DCF trackers and achieves significant performance improvement.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 50 条
  • [1] Robust visual tracking with correlation filters and metric learning
    Yuan, Di
    Kang, Wei
    He, Zhenyu
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [2] Regularisation learning of correlation filters for robust visual tracking
    Jiang, Min
    Shen, Jianyu
    Kong, Jun
    Huo, Hongtao
    IET IMAGE PROCESSING, 2018, 12 (09) : 1586 - 1594
  • [3] Robust Visual Tracking via Multitask Sparse Correlation Filters Learning
    Nai, Ke
    Li, Zhiyong
    Gan, Yihui
    Wang, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 502 - 515
  • [4] Learning correlation filters in independent feature channels for robust visual tracking
    Wang, Cailing
    Xu, Yechao
    Liu, Huajun
    Jing, Xiaoyuan
    PATTERN RECOGNITION LETTERS, 2019, 127 : 94 - 102
  • [5] Learning Rotation Adaptive Correlation Filters in Robust Visual Object Tracking
    Rout, Litu
    Raju, Priya Mariam
    Mishra, Deepak
    Gorthi, Rama Krishna Sai Subrahmanyam
    COMPUTER VISION - ACCV 2018, PT II, 2019, 11362 : 646 - 661
  • [6] Learning Variance Kernelized Correlation Filters for Robust Visual Object Tracking
    Liu, Chenghuan
    Huynh, Du Q.
    Reynolds, Mark
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 567 - 574
  • [7] Learning Channel-Aware Correlation Filters for Robust Object Tracking
    Nai, Ke
    Li, Zhiyong
    Wang, Haidong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7843 - 7857
  • [8] Robust Visual Tracking Based on Kernelized Correlation Filters
    Jiang, Min
    Shen, Jianyu
    Kong, Jun
    Wang, Benxuan
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), 2017, : 110 - 115
  • [9] Robust Object Tracking Using Alternative Correlation Filters
    Baskurt, Kemal Batuhan
    Samet, Refik
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [10] Ensemble Of Adaptive Correlation Filters For Robust Visual Tracking
    Gundogdu, Erhan
    Ozkan, Huseyin
    Alatan, A. Aydin
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2016, : 15 - 22