Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

被引:49
|
作者
Tempere, J. [1 ,2 ]
Klimin, S. N. [1 ]
Devreese, J. T. [1 ,3 ]
机构
[1] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium
[2] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[3] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; critical points; fermion systems; fluctuations; phase diagrams; phase separation; phase transformations; superfluidity; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; SUPERCONDUCTIVITY; BCS; TEMPERATURE; CROSSOVER; EVOLUTION; SYSTEMS; DIAGRAM;
D O I
10.1103/PhysRevA.79.053637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, KH
    Fazio, R
    JETP LETTERS, 1998, 68 (04) : 312 - 316
  • [22] On Berezinskii-Kosterlitz-Thouless transition in monoaxial chiral helimagnets
    Proskurin, Igor
    Ovchinnikov, Alexander S.
    Kishine, Jun-ichiro
    8TH JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS2016), 2017, 903
  • [23] Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid
    Situ, Guohai
    Fleischer, Jason W.
    NATURE PHOTONICS, 2020, 14 (08) : 517 - +
  • [24] The relevancy of the chiral boson to the Berezinskii-Kosterlitz-Thouless transition as a boundary effect
    Inoue, Hitoshi
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [25] Berezinskii-Kosterlitz-Thouless transition close to the percolation threshold
    Costa, B. V.
    Coura, P. Z.
    Leonel, S. A.
    PHYSICS LETTERS A, 2013, 377 (18) : 1239 - 1241
  • [26] New Experimental Criterion of the Berezinskii-Kosterlitz-Thouless Transition
    Vasyutin, M. A.
    Golovashkin, A. I.
    Kuzmichev, N. D.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2008, 35 (09) : 286 - 289
  • [27] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, K.-H.
    Fazio, R.
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1998, 68 (04):
  • [28] Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
    Ze Hu
    Zhen Ma
    Yuan-Da Liao
    Han Li
    Chunsheng Ma
    Yi Cui
    Yanyan Shangguan
    Zhentao Huang
    Yang Qi
    Wei Li
    Zi Yang Meng
    Jinsheng Wen
    Weiqiang Yu
    Nature Communications, 11
  • [29] Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions
    Kloeckner, C.
    Karrasch, C.
    Kennes, D. M.
    PHYSICAL REVIEW LETTERS, 2020, 125 (14)
  • [30] Berezinskii-Kosterlitz-Thouless transitions in a ferromagnetic superfluid: Effects of axial magnetization
    Underwood, Andrew P. C.
    Groszek, Andrew J.
    Yu, Xiaoquan
    Blakie, P. B.
    Williamson, L. A.
    PHYSICAL REVIEW A, 2024, 110 (01)