Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

被引:49
|
作者
Tempere, J. [1 ,2 ]
Klimin, S. N. [1 ]
Devreese, J. T. [1 ,3 ]
机构
[1] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium
[2] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[3] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; critical points; fermion systems; fluctuations; phase diagrams; phase separation; phase transformations; superfluidity; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; SUPERCONDUCTIVITY; BCS; TEMPERATURE; CROSSOVER; EVOLUTION; SYSTEMS; DIAGRAM;
D O I
10.1103/PhysRevA.79.053637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Superfluid density and Berezinskii-Kosterlitz-Thouless transition of a spin-orbit-coupled Fulde-Ferrell superfluid
    Cao, Ye
    Liu, Xia-Ji
    He, Lianyi
    Long, Gui-Lu
    Hu, Hui
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [42] Berezinskii-Kosterlitz-Thouless transition in a trapped quasi-two-dimensional Fermi gas near a Feshbach resonance
    Zhang, Wei
    Lin, G. -D.
    Duan, L. -M.
    PHYSICAL REVIEW A, 2008, 78 (04):
  • [43] The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagome antiferromagnet
    Cherepanov, VB
    Kolokolov, IV
    Podivilov, EV
    JETP LETTERS, 2001, 74 (12) : 596 - 599
  • [44] Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
    Hu, Ze
    Ma, Zhen
    Liao, Yuan-Da
    Li, Han
    Ma, Chunsheng
    Cui, Yi
    Shangguan, Yanyan
    Huang, Zhentao
    Qi, Yang
    Li, Wei
    Meng, Zi Yang
    Wen, Jinsheng
    Yu, Weiqiang
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [45] Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the Ising model on a growing network
    Bauer, M
    Coulomb, S
    Dorogovtsev, SN
    PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [46] Berezinskii-Kosterlitz-Thouless transition from neural network flows
    Ng, Kwai-Kong
    Huang, Ching-Yu
    Lin, Feng-Li
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [47] Unconventional Berezinskii-Kosterlitz-Thouless Transition in the Multicomponent Polariton System
    Dagvadorj, G.
    Comaron, P.
    Szyma, M. H.
    PHYSICAL REVIEW LETTERS, 2023, 130 (13)
  • [48] Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films
    Koenig, E. J.
    Levchenko, A.
    Protopopov, I. V.
    Gornyi, I. V.
    Burmistrov, I. S.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2015, 92 (21)
  • [49] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [50] Simulating the Berezinskii-Kosterlitz-Thouless transition with the complex Langevin algorithm
    Heinen, Philipp
    Gasenzer, Thomas
    PHYSICAL REVIEW A, 2023, 108 (05)