Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

被引:49
|
作者
Tempere, J. [1 ,2 ]
Klimin, S. N. [1 ]
Devreese, J. T. [1 ,3 ]
机构
[1] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium
[2] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[3] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; critical points; fermion systems; fluctuations; phase diagrams; phase separation; phase transformations; superfluidity; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; SUPERCONDUCTIVITY; BCS; TEMPERATURE; CROSSOVER; EVOLUTION; SYSTEMS; DIAGRAM;
D O I
10.1103/PhysRevA.79.053637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas
    Nitsche, Wolfgang H.
    Kim, Na Young
    Roumpos, Georgios
    Schneider, Christian
    Kamp, Martin
    Hofling, Sven
    Forchel, Alfred
    Yamamoto, Yoshihisa
    PHYSICAL REVIEW B, 2014, 90 (20):
  • [32] Transport signature of the magnetic Berezinskii-Kosterlitz-Thouless transition
    Kim, Se Kwon
    Chung, Suk Bum
    SCIPOST PHYSICS, 2021, 10 (03):
  • [33] New experimental criterion of the Berezinskii-Kosterlitz-Thouless transition
    M. A. Vasyutin
    A. I. Golovashkin
    N. D. Kuzmichev
    Bulletin of the Lebedev Physics Institute, 2008, 35 : 286 - 289
  • [34] Magnetoresistance driven by the magnetic Berezinskii-Kosterlitz-Thouless transition
    Flebus, B.
    PHYSICAL REVIEW B, 2021, 104 (02)
  • [35] Fidelity at Berezinskii-Kosterlitz-Thouless quantum phase transitions
    Sun, G.
    Kolezhuk, A. K.
    Vekua, T.
    PHYSICAL REVIEW B, 2015, 91 (01):
  • [36] Berezinskii-Kosterlitz-Thouless phase induced by dissipating quasisolitons
    Gawryluk, Krzysztof
    Brewczyk, Miroslaw
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [37] Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid
    Underwood, Andrew P. C.
    Groszek, Andrew J.
    Yu, Xiaoquan
    Blakie, P. B.
    Williamson, L. A.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [38] Berezinskii-Kosterlitz-Thouless transition in two-dimensional lattice gas models
    Chamati, Hassan
    Romano, Silvano
    PHYSICAL REVIEW B, 2006, 73 (18)
  • [39] Holographic Berezinskii-Kosterlitz-Thouless Transitions
    Jensen, Kristan
    Karch, Andreas
    Son, Dam T.
    Thompson, Ethan G.
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [40] Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films
    Alexey Yu. Mironov
    Daniel M. Silevitch
    Thomas Proslier
    Svetlana V. Postolova
    Maria V. Burdastyh
    Anton K. Gutakovskii
    Thomas F. Rosenbaum
    Valerii V. Vinokur
    Tatyana I. Baturina
    Scientific Reports, 8