Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions

被引:7
|
作者
Kloeckner, C. [1 ]
Karrasch, C. [1 ]
Kennes, D. M. [2 ,3 ,4 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany
[2] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[3] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[4] Max Planck Inst Struct & Dynam Matter, Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany
关键词
RENORMALIZATION-GROUP; FIELD-THEORY;
D O I
10.1103/PhysRevLett.125.147601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We employ a novel, unbiased renormalization-group approach to investigate nonequilibrium phase transitions in infinite lattice models. This allows us to address the delicate interplay of fluctuations and ordering tendencies in low dimensions out of equilibrium. We study a prototypical model for the metal to insulator transition of spinless interacting fermions coupled to electronic baths and driven out of equilibrium by a longitudinal static electric field. The closed system features a Berezinskii-Kosterlitz-Thouless transition between a metallic and a charge-ordered phase in the equilibrium limit. We compute the nonequilibrium phase diagram and illustrate a highly nonmonotonic dependence of the phase boundary on the strength of the electric field: for small fields, the induced currents destroy the charge order, while at higher electric fields it reemerges due to many-body Wannier-Stark localization physics. Finally, we show that the current in such an interacting nonequilibrium system can counter-intuitively flow opposite to the direction of the electric field. This nonequilibrium steady state is reminiscent of an equilibrium distribution function with an effective negative temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Holographic Berezinskii-Kosterlitz-Thouless Transitions
    Jensen, Kristan
    Karch, Andreas
    Son, Dam T.
    Thompson, Ethan G.
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [2] Fidelity at Berezinskii-Kosterlitz-Thouless quantum phase transitions
    Sun, G.
    Kolezhuk, A. K.
    Vekua, T.
    PHYSICAL REVIEW B, 2015, 91 (01):
  • [3] More holographic Berezinskii-Kosterlitz-Thouless transitions
    Jensen, Kristan
    PHYSICAL REVIEW D, 2010, 82 (04):
  • [4] Longitudinal fluctuations in the Berezinskii-Kosterlitz-Thouless phase
    Jakubczyk, Pawel
    Metzner, Walter
    PHYSICAL REVIEW B, 2017, 95 (08)
  • [5] Berezinskii-Kosterlitz-Thouless Phase Transitions with Long-Range Couplings
    Giachetti, Guido
    Defenu, Nicolo
    Ruffo, Stefano
    Trombettoni, Andrea
    PHYSICAL REVIEW LETTERS, 2021, 127 (15)
  • [6] Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
    Ze Hu
    Zhen Ma
    Yuan-Da Liao
    Han Li
    Chunsheng Ma
    Yi Cui
    Yanyan Shangguan
    Zhentao Huang
    Yang Qi
    Wei Li
    Zi Yang Meng
    Jinsheng Wen
    Weiqiang Yu
    Nature Communications, 11
  • [7] New insight into the Berezinskii-Kosterlitz-Thouless phase transition
    Gerber, Urs
    Bietenholz, Wolfgang
    Rejon-Barrera, Fernando G.
    XIV MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2015, 651
  • [8] Berezinskii-Kosterlitz-Thouless phase induced by dissipating quasisolitons
    Gawryluk, Krzysztof
    Brewczyk, Miroslaw
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Machine-Learning Detection of the Berezinskii-Kosterlitz-Thouless Transitions
    Mochizuki, Masahito
    Miyajima, Yusuke
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2025, 94 (03)
  • [10] Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
    Hu, Ze
    Ma, Zhen
    Liao, Yuan-Da
    Li, Han
    Ma, Chunsheng
    Cui, Yi
    Shangguan, Yanyan
    Huang, Zhentao
    Qi, Yang
    Li, Wei
    Meng, Zi Yang
    Wen, Jinsheng
    Yu, Weiqiang
    NATURE COMMUNICATIONS, 2020, 11 (01)