Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions

被引:7
|
作者
Kloeckner, C. [1 ]
Karrasch, C. [1 ]
Kennes, D. M. [2 ,3 ,4 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany
[2] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[3] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[4] Max Planck Inst Struct & Dynam Matter, Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany
关键词
RENORMALIZATION-GROUP; FIELD-THEORY;
D O I
10.1103/PhysRevLett.125.147601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We employ a novel, unbiased renormalization-group approach to investigate nonequilibrium phase transitions in infinite lattice models. This allows us to address the delicate interplay of fluctuations and ordering tendencies in low dimensions out of equilibrium. We study a prototypical model for the metal to insulator transition of spinless interacting fermions coupled to electronic baths and driven out of equilibrium by a longitudinal static electric field. The closed system features a Berezinskii-Kosterlitz-Thouless transition between a metallic and a charge-ordered phase in the equilibrium limit. We compute the nonequilibrium phase diagram and illustrate a highly nonmonotonic dependence of the phase boundary on the strength of the electric field: for small fields, the induced currents destroy the charge order, while at higher electric fields it reemerges due to many-body Wannier-Stark localization physics. Finally, we show that the current in such an interacting nonequilibrium system can counter-intuitively flow opposite to the direction of the electric field. This nonequilibrium steady state is reminiscent of an equilibrium distribution function with an effective negative temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder
    Maccari, I.
    Benfatto, L.
    Castellani, C.
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [32] Berezinskii-Kosterlitz-Thouless transition with a constraint lattice action
    Bietenholz, Wolfgang
    Gerber, Urs
    Rejon-Barrera, Fernando G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [33] Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas
    Hadzibabic, Zoran
    Kruger, Peter
    Cheneau, Marc
    Battelier, Baptiste
    Dalibard, Jean
    NATURE, 2006, 441 (7097) : 1118 - 1121
  • [34] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models
    Borisenko, Oleg
    Chelnokov, Volodymyr
    Cuteri, Francesca
    Papa, Alessandro
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [35] Berezinskii-Kosterlitz-Thouless transition in rhenium nitride films
    Takiguchi, Kosuke
    Krockenberger, Yoshiharu
    Taniyasu, Yoshitaka
    Yamamoto, Hideki
    PHYSICAL REVIEW B, 2024, 110 (02)
  • [36] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, KH
    Fazio, R
    JETP LETTERS, 1998, 68 (04) : 312 - 316
  • [37] Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
    Erez, Amir
    Meir, Yigal
    PHYSICAL REVIEW B, 2013, 88 (18):
  • [38] On Berezinskii-Kosterlitz-Thouless transition in monoaxial chiral helimagnets
    Proskurin, Igor
    Ovchinnikov, Alexander S.
    Kishine, Jun-ichiro
    8TH JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS2016), 2017, 903
  • [39] Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid
    Situ, Guohai
    Fleischer, Jason W.
    NATURE PHOTONICS, 2020, 14 (08) : 517 - +
  • [40] Berezinskii-Kosterlitz-Thouless transition close to the percolation threshold
    Costa, B. V.
    Coura, P. Z.
    Leonel, S. A.
    PHYSICS LETTERS A, 2013, 377 (18) : 1239 - 1241