A novel statistical analysis and interpretation of flow cytometry data

被引:10
|
作者
Banks, H. T. [1 ,2 ]
Kapraun, D. F. [1 ,2 ]
Thompson, W. Clayton [1 ,2 ]
Peligero, Cristina [3 ]
Argilaguet, Jordi [3 ]
Meyerhans, Andreas [3 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Ctr Quantitat Sci Biomed, Raleigh, NC 27695 USA
[3] Univ Pompeu Fabra, Dept Expt & Hlth Sci, ICREA Infect Biol Lab, Barcelona 08003, Spain
基金
美国国家科学基金会;
关键词
immunology; flow cytometry; cyton models; mathematical and statistical models; label dynamics; parameter estimation; cellular models; MEASURING LYMPHOCYTE-PROLIFERATION; IN-VITRO; DIVISION; MODEL; RESPONSES; DYNAMICS; VIVO;
D O I
10.1080/17513758.2013.812753
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A recently developed class of models incorporating the cyton model of population generation structure into a conservation-based model of intracellular label dynamics is reviewed. Statistical aspects of the data collection process are quantified and incorporated into a parameter estimation scheme. This scheme is then applied to experimental data for PHA-stimulated CD4+T and CD8+T cells collected from two healthy donors. This novel mathematical and statistical framework is shown to form the basis for accurate, meaningful analysis of cellular behaviour for a population of cells labelled with the dye carboxyfluorescein succinimidyl ester and stimulated to divide.
引用
收藏
页码:96 / 132
页数:37
相关论文
共 50 条
  • [41] Publishing flow cytometry data
    Alvarez, D. F.
    Helm, K.
    DeGregori, J.
    Roederer, M.
    Majka, S.
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2010, 298 (02) : L127 - L130
  • [42] Flow cytometry data standards
    Spidlen J.
    Shooshtari P.
    Kollmann T.R.
    Brinkman R.R.
    BMC Research Notes, 4 (1)
  • [43] Flow Plex-A tool for unbiased comprehensive flow cytometry data analysis
    Nowatzky, Johannes
    Resnick, Ezra
    Manasson, Julia
    Stagnar, Cristy
    Al-Obeidi, Arshed Fahad
    Manches, Olivier
    IMMUNITY INFLAMMATION AND DISEASE, 2019, 7 (03) : 105 - 111
  • [44] Scalable Analysis of Flow Cytometry Data Using R/Bioconductor
    Klinke, David J., II
    Brundage, Kathleen M.
    CYTOMETRY PART A, 2009, 75A (08) : 699 - 706
  • [45] Critical assessment of automated flow cytometry data analysis techniques
    Nima Aghaeepour
    Greg Finak
    Holger Hoos
    Tim R Mosmann
    Ryan Brinkman
    Raphael Gottardo
    Richard H Scheuermann
    Nature Methods, 2013, 10 (3) : 228 - 238
  • [46] A multidimensional classification approach for the automated analysis of flow cytometry data
    Pedreira, Carlos Eduardo
    Costa, Elaine S.
    Arroyo, M. Elena
    Allmeida, Julia
    Orfao, Alberto
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (03) : 1155 - 1162
  • [47] Current trends in flow cytometry automated data analysis software
    Cheung, Melissa
    Campbell, Jonathan J.
    Whitby, Liam
    Thomas, Robert J.
    Braybrook, Julian
    Petzing, Jon
    CYTOMETRY PART A, 2021, 99 (10) : 1007 - 1021
  • [48] High throughput automated analysis of big flow cytometry data
    Rahim, Albina
    Meskas, Justin
    Drissler, Sibyl
    Yue, Alice
    Lorenc, Anna
    Laing, Adam
    Saran, Namita
    White, Jacqui
    Abeler-Dorner, Lucie
    Hayday, Adrian
    Brinkman, Ryan R.
    METHODS, 2018, 134 : 164 - 176
  • [49] Analysis of flow cytometry data using an automatic processing tool
    Jeffries, David
    Zaidi, Irfan
    de Jong, Bouke
    Holland, Martin J.
    Miles, David J. C.
    CYTOMETRY PART A, 2008, 73A (09) : 857 - 867
  • [50] Critical assessment of automated flow cytometry data analysis techniques
    Aghaeepour, Nima
    Finak, Greg
    Hoos, Holger
    Mosmann, Tim R.
    Brinkman, Ryan
    Gottardo, Raphael
    Scheuermann, Richard H.
    NATURE METHODS, 2013, 10 (03) : 228 - 238