A novel statistical analysis and interpretation of flow cytometry data

被引:10
|
作者
Banks, H. T. [1 ,2 ]
Kapraun, D. F. [1 ,2 ]
Thompson, W. Clayton [1 ,2 ]
Peligero, Cristina [3 ]
Argilaguet, Jordi [3 ]
Meyerhans, Andreas [3 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Ctr Quantitat Sci Biomed, Raleigh, NC 27695 USA
[3] Univ Pompeu Fabra, Dept Expt & Hlth Sci, ICREA Infect Biol Lab, Barcelona 08003, Spain
基金
美国国家科学基金会;
关键词
immunology; flow cytometry; cyton models; mathematical and statistical models; label dynamics; parameter estimation; cellular models; MEASURING LYMPHOCYTE-PROLIFERATION; IN-VITRO; DIVISION; MODEL; RESPONSES; DYNAMICS; VIVO;
D O I
10.1080/17513758.2013.812753
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A recently developed class of models incorporating the cyton model of population generation structure into a conservation-based model of intracellular label dynamics is reviewed. Statistical aspects of the data collection process are quantified and incorporated into a parameter estimation scheme. This scheme is then applied to experimental data for PHA-stimulated CD4+T and CD8+T cells collected from two healthy donors. This novel mathematical and statistical framework is shown to form the basis for accurate, meaningful analysis of cellular behaviour for a population of cells labelled with the dye carboxyfluorescein succinimidyl ester and stimulated to divide.
引用
收藏
页码:96 / 132
页数:37
相关论文
共 50 条
  • [11] Computational Analysis of Microbial Flow Cytometry Data
    Rubbens, Peter
    Props, Ruben
    MSYSTEMS, 2021, 6 (01)
  • [12] Parametric analysis of flow-cytometry data
    Igla R.E.
    Moscow University Computational Mathematics and Cybernetics, 2008, 32 (2) : 81 - 90
  • [13] Analysis of Clinical Flow Cytometric Immunophenotyping Data by Clustering on Statistical Manifolds: Treating Flow Cytometry Data as High-Dimensional Objects
    Finn, William G.
    Carter, Kevin M.
    Raich, Raviv
    Stoolman, Lloyd M.
    Hero, Alfred O.
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2009, 76B (01) : 1 - 7
  • [14] AutoGate: automating analysis of flow cytometry data
    Meehan, Stephen
    Walther, Guenther
    Moore, Wayne
    Orlova, Darya
    Meehan, Connor
    Parks, David
    Ghosn, Eliver
    Philips, Megan
    Mitsunaga, Erin
    Waters, Jeffrey
    Kantor, Aaron
    Okamura, Ross
    Owumi, Solomon
    Yang, Yang
    Herzenberg, Leonard A.
    Herzenberg, Leonore A.
    IMMUNOLOGIC RESEARCH, 2014, 58 (2-3) : 218 - 223
  • [15] Interpretation of preliminary electrical data in impedance flow cytometry: numerical simulation, theoretical analysis, and neural net fitting
    Chen, Xiao
    Wang, Minruihong
    Liu, Yan
    Liu, Mingyue
    Chen, Deyong
    Chen, Bo
    Wang, Junbo
    Chen, Jian
    MICROFLUIDICS AND NANOFLUIDICS, 2023, 27 (02)
  • [16] Statistical considerations in DNA flow cytometry
    Eudey, TL
    STATISTICAL SCIENCE, 1996, 11 (04) : 320 - 334
  • [17] Interpretation of preliminary electrical data in impedance flow cytometry: numerical simulation, theoretical analysis, and neural net fitting
    Xiao Chen
    Minruihong Wang
    Yan Liu
    Mingyue Liu
    Deyong Chen
    Bo Chen
    Junbo Wang
    Jian Chen
    Microfluidics and Nanofluidics, 2023, 27
  • [18] FLOPTICS: A Novel Automated Gating Technique for Flow Cytometry Data
    Sriphum, Wiwat
    Wills, Gary
    Green, Nicolas G.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COMPLEXITY, FUTURE INFORMATION SYSTEMS AND RISK (COMPLEXIS), 2020, : 96 - 102
  • [19] Impedance Flow Cytometry: A Novel Technique in Pollen Analysis
    Heidmann, Iris
    Schade-Kampmann, Grit
    Lambalk, Joep
    Ottiger, Marcel
    Di Berardino, Marco
    PLOS ONE, 2016, 11 (11):
  • [20] Neural network analysis of flow cytometry immunophenotype data
    DECECS, University of Cincinnati, Cincinnati, OH 45221-0030, United States
    IEEE TRANS. BIOMED. ENG., 8 (803-811):