A novel statistical analysis and interpretation of flow cytometry data

被引:10
|
作者
Banks, H. T. [1 ,2 ]
Kapraun, D. F. [1 ,2 ]
Thompson, W. Clayton [1 ,2 ]
Peligero, Cristina [3 ]
Argilaguet, Jordi [3 ]
Meyerhans, Andreas [3 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Ctr Quantitat Sci Biomed, Raleigh, NC 27695 USA
[3] Univ Pompeu Fabra, Dept Expt & Hlth Sci, ICREA Infect Biol Lab, Barcelona 08003, Spain
基金
美国国家科学基金会;
关键词
immunology; flow cytometry; cyton models; mathematical and statistical models; label dynamics; parameter estimation; cellular models; MEASURING LYMPHOCYTE-PROLIFERATION; IN-VITRO; DIVISION; MODEL; RESPONSES; DYNAMICS; VIVO;
D O I
10.1080/17513758.2013.812753
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A recently developed class of models incorporating the cyton model of population generation structure into a conservation-based model of intracellular label dynamics is reviewed. Statistical aspects of the data collection process are quantified and incorporated into a parameter estimation scheme. This scheme is then applied to experimental data for PHA-stimulated CD4+T and CD8+T cells collected from two healthy donors. This novel mathematical and statistical framework is shown to form the basis for accurate, meaningful analysis of cellular behaviour for a population of cells labelled with the dye carboxyfluorescein succinimidyl ester and stimulated to divide.
引用
收藏
页码:96 / 132
页数:37
相关论文
共 50 条
  • [21] AN ENVIRONMENT FOR EFFICIENT FLOW CYTOMETRY DATA MANAGEMENT AND ANALYSIS
    Drakos, John
    Psarra, Katherine
    Markala, Dimitra
    Karakantza, Marina
    Nikiforidis, George
    Sakellaropoulos, George
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2009, 76B (06) : 439 - 439
  • [22] BCyto: A shiny app for flow cytometry data analysis
    Bonilha, Caio Santos
    MOLECULAR AND CELLULAR PROBES, 2022, 65
  • [23] Data analysis in flow cytometry, a dynamic approach.
    Coder, D
    CYTOMETRY, 1997, 29 (01): : 92 - 93
  • [24] Data Analysis in Flow Cytometry: The Future Just Started
    Lugli, Enrico
    Roederer, Mario
    Cossarizza, Andrea
    CYTOMETRY PART A, 2010, 77A (07) : 705 - 713
  • [25] Neural network analysis of flow cytometry immunophenotype data
    Kothari, R
    Cualing, H
    Balachander, T
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1996, 43 (08) : 803 - 810
  • [26] Automated analysis of flow cytometry data comes of age
    Brinkman, Ryan R.
    Aghaeepour, Nima
    Finak, Greg
    Gottardo, Raphael
    Mosmann, Tim
    Scheuermann, Richard H.
    CYTOMETRY PART A, 2016, 89A (01) : 13 - 15
  • [27] COUPLED TENSOR FACTORIZATION FOR FLOW CYTOMETRY DATA ANALYSIS
    Flores, Philippe
    Harle, Guillaume
    Notarantonio, Anne-Beatrice
    Usevich, Konstantin
    D'Aveni, Maud
    Grandemange, Stephanie
    Rubio, Marie-Therese
    Brie, David
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [28] ON MULTIPARAMETER DATA-ANALYSIS IN FLOW-CYTOMETRY
    MANN, RC
    CYTOMETRY, 1987, 8 (02): : 184 - 189
  • [29] Multiparameter data acquisition and analysis of leukocytes by flow cytometry
    Stewart, CC
    Stewart, SJ
    METHODS IN CELL BIOLOGY, VOL 64, 2001, 64 : 289 - +
  • [30] BIG FLOW CYTOMETRY DATA ANALYSIS METHODS AND APPLICATIONS
    Rahim, Albina
    Nutter, Lauryl
    Brinkman, Ryan R.
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2019, 41 : 146 - 146